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We report the first fu11 band-structure calculation of frequency-dependent second-harmonic genera-
tion in odd-period (Si)„(Ge)„superlattices. We use these results in conjunction with a simple model to
estimate second-harmonic generation at Si/Ge interfaces.
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Optical second-harmonic generation (SHG) is forbid-
den in a medium with inversion symmetry, such as bulk
Si or Ge, within the dipole approximation. But at a sur-
face, or at an interface between two such media, the in-
version symmetry is broken and SHG is allowed. Thus,
SHG has been studied as a surface-specific optical
probe. ' Yet, except for some model calculations of
SHG from metallic surfaces which are far from realis-
tic, no microscopic calculations have been attempted for
surfaces or interfacial systems. In this Letter we pro-
pose a new approach to the study of interfacial SHG in

semiconductor superlattices where the density of inter-
faces is high.

Here we report the first full band-structure calculation
of dipole-allowed SHG from odd-period (Si)„/(Ge)„su-
perlattices. As expected, as n increases the calculated
SHG decreases. Thus, the (Si)„/(Ge)„structures pro-
vide a way of studying the transition of allowed SHG
from its nature in Si~Ge~, where we find it is comparable
to bulk materials such as GaAs which have no inversion

symmetry, to its nature in SisGes, where it approaches
the sum of contributions from a series of separated inter-
facial regions. Interpreting the results with a simple
model, we can deduce a prediction for the allowed SHG
from a single Si/Ge interface.

The SHG is also of interest from the point of view of

superlattice physics. Calculations of the dielectric tensor
e(to) of the (Si)„/(Ge)„superlattices show that, except
for very weak absorption due to the zone-folded states,
the linear optical response can be thought of as an aver-
age of the linear responses of bulk Si and Ge. The
SHG response in the odd-period (Si)„/(Ge)„superlat-
tices, on the other hand, has no counterpart in bulk Si
and Ge. As such, it is truly a "pure superlattice" proper-
ty.

Like bulk Si and Ge, the (Si) /(Ge)„superlattices
possess inversion symmetry for n and m even. Thus, in

the limit of many interfaces within a wavelength, SHG is

forbidden. We therefore concentrate here on the odd-
period superlattices. In a recent publication we carried
out a full band-structure calculation of the linear optical
properties of these superlattices, using a semi-ab initio
linear combination of Gaussian orbitals technique in con-
junction with the Xa method for constructing the poten-
tials of the constituent bulk materials. In our approach
we do not do any fitting to the superlattice properties and
our energy band-structure calculations are in good
agreement with experimental measurements. In this
paper we use the same energy band-structure and mo-
mentum matrix elements.

To calculate the second-order phase response, we use
perturbation theory with the minimal-coupling interac-
tion Hamiltonian, and we find
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within the independent-particle approximation, ~here
E =hto, Ej, =E, —Ei,r fj =f; f, , etc. , and f; —is the
Fermi occupation factor of the single-particle state i.
The p,~ are momentum matrix elements; indices i,j,1 run
over all single-particle states, the only restrictions arising
from the Fermi factors. Equation (1) seems to indicate
that g diverges in the limit of co 0. Aspnes' has
shown that once Eq. (1) is decomposed into divergent
terms and a finite term, the former vanish identically for
materials with cubic symmetry. More generally, we

t have derived new sum rules and can show that all diver-
gent terms vanish independent of the crystal symmetry
for filled valence bands. Once the divergent terms are
removed, we expand the finite term using the Fermi fac-
tors and algebraically simplify the expression. We then
explicitly write the contributions of the virtual-electron
(i is the valence, j and l are the conduction states) and
virtual-hole (i and I are the valence, j is the conduction
states) processes' and separate the real and imaginary
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parts of the expression in the usual manner by putting E =hco+iri and taking the limit ri 0+. The contribution of
the virtual-electron term to the imaginary part of the response is found to be
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where, e.g. , p,'j", is a momentum matrix elements between
a valence state i and conduction state j. The virtual-hole
term can be obtained from Eq. (2) by the following ex-

changes: E&; EJI, pj' p~&', p~&' pi,", and by having
the index I run over valence states. There is also an ex-
tra overall minus sign in the virtual-hole term, arising
from the anticommutation relations. As seen from Eq.
(2), resonances can occur when either co or 2co is the fre-

quency difference between two single-particle states.
To evaluate Eq. (2), we utilize the symmetry group of

these superlattices and reduce the integral over the Bril-
louin zone (BZ) to an integral over its irreducible seg-
ment. This integral is then performed using a sampling
method. Once we have evaluated Z", we use a
Kramers-Kronig relation to obtain the real part of Z
and then calculate its magnitude; we include both the
virtual-electron and virtual-hole contributions to the
response. The magnitudes of the two independent com-

ponents of Z
' (g(2i and gi2() as a function of frequency

are presented in Fig. l. In Table I we present their mag-
nitudes at zero frequency.

Examining the co- and 2co-term contributions [Eq. (2)]
to these results, we find that the first peak (around 1.3
eV) is due to the 2co resonance with the bulklike Ei opti-
cal peak. The second peak (around 2.7 eV) is due to the
sum of the co resonance with the bulklike E] optical peak
and the 2' resonance with the bulklike E2 optical peak.
Therefore, most of the structure in g arises from tran-
sitions to bulklike, rather than zone-folded, conduction
states. This is not surprising since the matrix elements
between valence-band and zone-folded conduction-band
states are generally 5-20 times smaller than those be-
tween valence-band and bulklike conduction-band
states. Yet, unlike the results for e(co) where the

response due to the bulklike states can be understood for
the most part as an average of the responses due to such

states in the constituent bulk materials, here the
modification of the bulklike states due to the interfacial
is crucial, since bulk Si and Ge do not allow dipole SHG.

To try to model how the SHG arises from the inter-
faces in a simple way, which will also help us to under-
stand the decrease in Z as n increases, we use a bond
orbital model. In this model we consider SHG to arise
locally at the Si—Ge bonds where the inversion symme-

try is clearly broken. Assuming the electrons respond
only by moving along the bond direction b (pointing
from Si to Ge), we take the dipole moment induced at

2' to be given by

p(2co) =P(co)b[b. E(co)] ', (3)
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where cr =4asG/a&. There is much cancellation between
terms of the form (3) in Eq. (4); indeed, for an even

period superlattice we find Z =0 as expected. Note
that Eq. (4) predicts that the magnitude of responses for
n =3 and 5 should be one-third and one-fifth, respective-

ly, of the response for n=1, roughly in agreement with

the results presented in Fig. 1 and Table I; this results
simply because the density of interfaces for n =3 and 5

are, respectively, & and & of the density of interfaces
for n=1. Equation (4) also predicts gI2i(=pi(2(, which
we can see from Fig. 1 is satisfied to within about 50%;
this indicates the degree to which the model is valid.

We use the same model of Eq. (3) to estimate the in-

terface second-order susceptibility Z (in units of bulk
second-order susceptibility per unit area) of a single
Si/Ge interface. We find
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where z points from the Si to the Ge atom. Obtaining
p(co) by setting the band-structure calculations for

3~JI73+ ) +32 I equal to the right-hand side of Eq. (4), we

then find g"' using Eq. (5). The results of this calcula-
tion for the term in the first line of Eq. (5) are presented

where P(co) is a nonlinear response coefficient. For any
structure, we can estimate the SHG by summing up con-
tributions [Eq. (3)] from all the Si—Ge bonds. In par-
ticular, for an (Si)„/(Ge)„superlattice with a coordinate
system chosen so that a Si atom is at the origin and a Ge
atom is at (-, a&, —,

'
a&,as'), where a& is the lattice con-

stant in the plane perpendicular to the superlattice axis
and asG is the spacing between a Si and Ge layer, we

find
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F16. l. &esults for Iz"'( —2co;ro. co) I for (a) n 1, (b) n 3, and (c) n 5 [solid lines, g')/(co); crosses, ggI(e)].

in Fig. 2. The curves extracted from the dN'erent super-
lattice calculations are in good agreement. The dis-
crepancies arise because in this model SHG is assumed
to arise entirely from the interfaces; since the interfaces
in diA'erent superlattices are not exactly the same, it is

then not surprising that the results predicted for an iso-
lated interface are slightly diA'erent. Nonetheless, this is

the first indication of the magnitude and frequency
dependence of SHG at a semiconductor interface.

Returning to our superlattice results (Fig. I), we note
that there is a reasonably large SHG response even
below 1.16 eV, the minimal (indirect) bandgap of Si
which is typically used as a substrate and spacing ma-
terial for these superlattices. It should be possible,

TABLE I. Theoretical results for Z'-'(0) in units of 10
esu.

Component

~,'ll(0)
gyle(0)

Si)Ge)

9.4
7.5

Si3Ge3

3.3
2.4

2. 1

1.4

therefore, to measure Z' below this energy, since there
would be no loss of the pump beam intensity due to
linear absorption in the Si. Since the indirect absorption
is weak at energies up to 1.7 eV (Ref. 11), one should be
able to detect most of the structure even at these ener-
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response is comparable to the corresponding response of
zinc-blende materials, and should be experimentally ob-
servable. We have also shown that the response can, in

large part, be understood as arising from Si—Ge bonds
where the inversion symmetry is broken, and we have
used this to obtain an estimate for the SHG at an Si/Ge
interface.
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FIG. 2. Results for SHG at interfaces (solid line, n= 1;
crosses, n =3; and dashed line, n =5).

gies. Finally, we note that even for SisGes the predicted
g( is within an order of magnitude of that for GaAs,
and so it should completely dominate the smaller quad-

rupole and magnetic-dipole-like terms which are present

even in materials with inversion symmetry.
In conclusion, we have performed for the first time a

full band-structure calculation of Z' 1 ( —2';ro, cu) for
the odd-period, strained, (Si)„/(Ge) „superlattices. The
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