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Interaction Energies of Impurities in Cu and Ni
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%e present systematic local-density-functional calculations for the interaction energies of 31 and 4sp
impurities (Sc-Br) with vacancies in Cu and Ni crystals. We apply the Kohn-Korringa-Rostoker
Green s-function method and evaluate the fu11 anisotropic charge density. The interaction energies are
obtained by total-energy calculations and by a newly derived formula based on the Hellmann-Feynman
theorem. Both methods agree very well and confirm the experimentally known trends.

PACS numbers: 71.45.Nt, 71.55.Dp

The knowledge of the interaction energies of point de-
fects in solids is indispensable to the understanding of
many basic physical processes, such as diffusion, short-
range order, segregation, ordering, etc. As experience
has shown, it is very difficult to obtain reliable informa-
tion on the interactions, both theoretically and experi-
mentally. Previous calculations based either on the jelli-
um model, ' on pseudopotentials combined with
second-order perturbation theory, ' or on the tight-
binding method are only of restricted use because of the
inherent limitations of these methods. The pioneering
work in this field is due to Deplante and Blandin, ' who

performed jellium-type calculations for interactions be-
tween vacancies and 3d and 4sp impurities in Cu and ob-
tained qualitatively reasonable results. Gupta tried to
improve these calculations, but with limited success.
Pseudopotentials in second-order perturbation theory can
only be used for simple metals. The application to im-

purities with nuclear charges hZ +'1 already seems to
be problematic, and even more so the treatment of va-

cancies. While the tight-binding calculations possible
for transition metals contain a lot of physics, they are no-

toriously plagued by unknown parameters. There is

clearly a strong need for realistic ab initio calculations,
which should have the same accuracy and predictability
as present-day, state-of-the-art results for ideal crystals.
To our knowledge such calculations have not been per-
formed until now. It is our aim in the present Letter to
describe the methods for accurate ab initio calculations
of interaction energies and to demonstrate their success
for particular examples. Here we choose as host crystals
Cu (a "simple" noble metal) and Ni (a ferromagnetic
transition metal) and consider the interaction between an
impurity and a vacancy on nearest-neighbor sites.

We apply density-functional theory in the local-
density approximation of von Barth and Hedin with the
parameters as given by Moruzzi, Janak, and Williams.
The calculations are based on the Kohn-Korringa-
Rostoker (KKR) Green's-function method for impurity
calculations and on a recently developed accurate
total-energy formalism. ' In the KKR Green's-function
method the Green's function of the system is expanded in

each cell into radial eigenfunctions of the local potential,
assumed to be spherically symmetric within Wigner-
Seitz spheres. All the multiple-scattering information is
contained in the structural Green's-function coefficients
GLL (E), which are related to the ones GLL (E) of the
ideal crystal by a Dyson equation,

GtT (E) -GLL (E)

+ 2 GLT" (E)I5tt"- GL"I'(E) .
tt It

, n

Here htl" tI" —tI" are the changes of the I matrices in

the vicinity of the defect. The solution of this Dyson
equation involves the inversion of matrices, the rank of
which is determined by the number of perturbed poten-
tials and the number of angular momenta taken into ac-
count.

In our calculations we consider two point defects on
nearest-neighbor sites and allow the potentials of all host
atoms to be perturbed which are nearest neighbors to at
least one of the defects. These are twenty perturbed po-
tentials in total, which are calculated self-consistently.
Angular momenta up to I 3 are taken into account. As
shown in Ref. 10 both approximations are sufficient to
obtain reliable total energies. The single-particle ener-
gies are calculated by Lloyd's formula, thus including
the contributions over all space and for all angular mo-
menta. The double-counting contributions for both the
Coulomb and the exchange energies are calculated using
the full anisotropic charge density in each cell. In the
present calculations we approximate the integrals over
Wigner-Seitz cells by integrals over atomic spheres.
This approximation leads to suSciently accurate interac-
tion energies as more refined calculations with integra-
tions over the exact faceted Wigner-Seitz cell show. "

The interaction energy between point defects A and 8
is calculated as the total-energy diA'erence between three
difI'erent defect configurations, the AB complex, the sin-

gle 2 defect, and the single 8 defect, which are all calcu-
lated using potential perturbations over 20 atoms and the
same approximations. If hE~&~~ is the excess energy
(with respect to the energy of the ideal crystal) for the
AB complex, and hE~~~ and hE~q~ the corresponding ex-
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cess energies for the single A and 8 defects, then the in-

teraction energy is given by hE =AE~&z~ —AE~&~
—hE~qi. In principle, hE also contains contributions
from lattice relaxations. To avoid this complication we

restrict ourselves to systems for which lattice relaxations
are not of major importance, i.e., 3d and 4sp impurities
in Cu and Ni. We have chosen these hosts since Cu is

normally considered as a simple metal and a kind of pro-

totype for electronic-structure calculations, whereas Ni
is a transition metal and, moreover, ferromagnetic. Sin-

gle impurities show a very different behavior in these
hosts; e.g. , 3d impurities have an endothermic solubility
in Cu, but an exothermic one in Ni. '

As a central result of our work Fig. 1 shows the calcu-
lated interaction energies between a vacancy and an im-

purity of the 3d and 4sp series. Positive energies mean
repulsion of the two defects; negative energies, attrac-
tion. For the sp impurities in Cu and in Ni one obtains a

strong attraction being roughly proportional to the
valence difference dZ. While such a proportionality is

expected in Cu from pseudopotential theory (see below)
the fact that it also holds in Ni and in both cases up to
large valence differences hZ =5 to 6 is very surprising.
We will come back to this later.

For the transition-metal impurities the interaction
with the vacancy is repulsive and shows a more compli-
cated behavior. The dip in the middle of the 3d series
arises from magnetism. A calculation without spin po-
larization for Cu (dotted line) shows a very smooth
repulsive behavior throughout the whole 3d series. The
inverted parabolic curve is quite similar to the trends of
cohesion or surface energies of transition metals: Here it

is the bonding between the 3d electrons of the impurity
and the 4sp states of Cu which is partially lost at the va-

cancy. The large magnetic effects arise because the im-

purity moments are enhanced near a vacancy as a conse-
quence of the reduced coordination number. The same

effect is well known to enhance magnetism at surfaces.
The gain of exchange energy partly cancels the loss of
bonding close to the vacancy, thus explaining the re-
duced repulsion of the 3d impurities in Cu in the spin-
polarized calculation.

The comparison with experiments is rather difticult
since very few reliable data about the vacancy-solute in-

teraction exist. ' The best studied case is the interaction
of Ge impurities with vacancies in Cu. From positron
measurements Doyama et al. ' obtain —0.27 ~ 0.10 eV,
whereas Triftshauser and Jank' give —0.23 ~ 0.10 eV.
Both values compare well with our calculated value of
—0.25 eV for the interaction energy of a Ge atom in Cu.
Solute-diffusion data can also give valuable information
about the binding energies. The general trends found in

diff'usion experiments in Cu (see, e.g., Fig. 1 in Ref. 15)
are in agreement with the trends we obtain, i.e., a repul-
sion for the 3d impurities and an attraction roughly
linear to hZ for sp ones. A detailed analysis of the
CuGe systemi6 gives a binding energy of —0.18 ~0.08
eV, whereas for NiGe, a binding energy of —0.20
~ 0.06 eV is obtained (compared to our value of —0.29
eV). Note that the experimental values are free energies
which also contain some entropy contributions. The
close agreement between the calculated and experimen-
tal values suggests that these are small.

Since the calculated interaction energies represent the
changes of the vacancy formation energy due to a neigh-
boring impurity, one would expect a correlation with the
vacancy formation energy of the corresponding metals.
This is, however, complicated due to the diff'erent lattice
constants and crystal structures of these metals. Never-
theless, the vacancy formation energies of Zn (0.54 eV)
and Al (0.66 eV) are indeed appreciably smaller than
the one of Cu (1.28 eV) whereas those of the transition
metals are in general larger (Ni, 1.79 eV; Fe, 1.8 eV).
Another correlation might be even more important. By
considering the vacancy as a small internal surface, one
would expect the same, but enlarged trends for the bind-

ing energies at real surfaces. Thus our vacancy binding
energies should predict the trends of surface segregation
in Cu and Ni.

Total energies are in general difficult to interpret espe-
cially since they are the diff'erences of very large partial
energies. Because of their small size this is a serious
problem for the interaction energies. In the following we

derive a new and exact formula for the Hellmann-
Feynman theorem and give a direct relation of the in-
teraction energies to the screening charge densities of the
impurities. For this we consider the nuclear charge Z~
of the defect 2 as an external continuous parameter.
The derivative dE/dZ& of the total energy is given by

FIG. 1. Interaction energy of the impurity-vacancy complex
on nearest-neighbor sites in Cu (solid line) and Ni (dashed
line). The dotted line refers to non-spin-polarized calculations
for 3d impurities in Cu. Positive energies mean repulsion; neg-
ative ones, attraction.

dE 8E + &
bE dn(r)dr

dZq BZ~
&, &

" bn(r) dZq

=1'M(R~)+EF . (2)
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The first term, the derivative with respect to the explicit
dependence of the functional E[n(r)[ on the nuclear
charge Zz, yields the Madelung potential V~(R&) at
the nuclear position R~ due to all other nuclei and all
electrons:

n(r)

The second term in (2) arising from the implicit depen-
dence on Z& yields the Fermi energy EF because the
considered states are always neutral and bE/bn(r) =EF.
The result (2) allows a simple classical interpretation:
V~(R~)dZ& is the energy gained by increasing the nu-

clear charge against the Coulomb potential of all other
charges, while EF dZ& is the energy gained by adding
dZ~ electrons to the system to achieve neutrality. By in-

tegrating (2) from the host value ZH to the true value

Zz of the impurity we obtain the energy difference
E(Z~) E(ZH). —In order to obtain a formula for the
interaction energy hE between defect 2 and 8, we
"create" the defect A once with defect 8 on a nearest-
neighbor site and once without defect 8, which is

equivalent to defect 8 being infinitely far away. We ob-
tain for the interaction energy

hE z de [Vsr(Rg, Zg, Za) —Vsr(Rg, Zg, ZH)1, (4)

where VM(R~, Z~, Ztt) is the Madelung potential at the
nuclear site R~ of defect A with nuclear charge Z~, if
the second defect has the charge Ztt. Since the
Madelung potential contains the charge density n(r) as
the only nontrivial information, Eqs. (3) and (4) give a
very direct and exact relation between the interaction en-

ergy and the charge density. Contrary to the total-
energy expression the charge density for all intermediate
nuclear states between ZH and Zz is needed. Moreover,
errors in the charge density enter to linear order as com-
pared to second order in the total-energy expression (due
to its extremal properties). Despite this, considerable
advantages arise from (4) due to its simplicity and its
direct relation to the charge density, as we demonstrate
in the following.

Figure 2 shows a comparison between the solute-
vacancy interactions in Cu as calculated from the tota1
energy and from expression (4) based on the Hellmann-
Feyman theorem. The Z& integration has been per-
formed by the trapezoidal rule with a hZ& spacing of
hZ~ =1, so that only integer nuclear charge states are
used. Evidently all the calculated trends are already ob-
tained in this approximation. Even the dip in the middle
of the 3d series, caused by the enhanced local moments
of the 3d impurities close to the vacancy, is well repro-
duced. This is an especially remarkable fact since in Eq.
(4) only the charge density explicitly enters in the form
of the Coulomb potential, but not the magnetization den-
sity or the exchange potential. The close agreement be-
tween both curves is also an important check for the ac-
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FIG. 2. Interaction energies of impurities with a vacancy in

Cu, as calculated from the total energies (solid line) and from
the Hellmann-Feynman expression (2) (dashed line).

dZg 4V~(Rg), (s)

where AVsr(R~) is the change of the Madelung poten-
tial of a host atom at site R~, if the defect 8 alone is
present in the crystal. Since no assumption is made
about the strength of defect 8, we, e.g. , might identify 8
with a vacancy. As weak defect A we consider an sp im-

purity for which the interaction energy scales with the
excess charge AZ~, both in Cu and Ni (see Fig. I).
Indeed, the slopes of the d,E curves in Fig. I agree
reasonably well with the calculated potentials AVsr for
single vacancies. Equation (5) represents a very con-
venient way to calculate the interaction energy since only
the screened Coulomb potential of a single defect must
be calculated. As an application we calculate how the
interaction of 4sp impurities with a vacancy in Cu, Ag,
and Ni (Fig. 3) depends on the distance between the two
defects. The interaction is dominated by the strong at-
traction on nearest-neighbor sites and is rather weak at
larger distances, especially for Cu, and of oscillatory
character. Analogously the agglomeration of a third de-
fect to an impurity-vacancy complex could be studied by
just calculating h, V~ for the pair complex.

In summary, we have presented accurate local-
density-functional calculations for the interaction ener-
gies of impurities with vacancies in Cu and ferromagnet-
ic Ni. For both hosts we obtain quite similar trends: 3d

curacy of the calculation. The agreement becomes even
somewhat better if half-integer nuclear charges are used
for the Z~ integration in combination with Simpson's
rule. Equation (4) and Fig. 2 clearly demonstrate that
the total energy can be directly determined from the
charge density provided this is known with sufficient ac-
curacy.

If the defect A represents a weak perturbation, in (4)
the Zz dependence of the potentials may be neglected,
yielding the formula of Deplante and Blandin: '

~=hZ~ [Vw (Ra,Zs ) Vsr (Rw, ZH ) l
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FIG. 3. Distance dependence of the Madelung potential
AVM(R&) of a single vacancy in Cu and Ni for the first four

shells. For sp impurities the interaction energy is obtained ac-
cording to Eq. (4) by multiplying with the valence difference

hZ~. Negative energies are marked as open columns; positive

as full ones.

impurities are repelled from the vacancy, strongly in Cu
and somewhat more weakly in Ni, whereas 4sp impuri-
ties are strongly bound by the vacancy with energies
scaling with the valence difference AZ. We believe that
these results are generally valid for all late transition
metals as hosts. By applying the Hellmann-Feynman
theorem with the nuclear charge of the impurity as an
external variable we derive a new and exact formula for
the interaction energy which focuses on the electrostatic
origin of the interaction. We demonstrate that the sim-

plicity of this formula has considerable advantages com-
pared to the usual total-energy expression.
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