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Elastic Singularities at the Peierls Transition
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We consider the elastic softening of quasi-one-dimensional materials near the Peierls transition caused

by critical fluctuations in the charge-density-wave order parameter. Singularities in the elastic constants
and thermal expansion are related to those in the specific heat. Our analysis suggests that a correction
to scaling dominates the asymptotic critical behavior over the observed range of temperatures. Experi-
mental data are used to estimate the width of the critical region according to the Ginzburg criterion.
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Young's moduli in quasi-one-dimensional crystals are
observed to soften near the Peierls transition tempera-
ture T, by as much as 1.5%, ' with a temperature depen-
dence which appears to be either a cusp or divergence,
rounded very close to T„. Such singular elastic proper-
ties should be expected near the transition to an incom-
mensurate charge-density-wave (CDW) state, since the
long-wavelength phonons are coupled to the critically
fluctuating CDW degrees of freedom. The associated
singularity in the speed of sound has been examined
theoretically by Nakane using a microscopic approach.
Working in a self-consistent one-loop approximation,
Nakane finds that the singular part of the speed of sound
varies like

~
T —T, ~

't . However, this approximation
scheme does not treat the effects of critical fluctuations
accurately and, consequently, is inadequate near the crit-
ical point. The importance of a full treatment of the
critical regime has been made apparent by recent experi-
ments on the blue bronze Ko3Mo03. x-ray scattering
data by Girault, Moudden, and Pouget and specific-
heat measurements by Kwok and Brown and by
Johnston suggest that this material exhibits x-y-like
critical behavior within an observable range of tempera-
tures near T„. These experiments raise the possibility of
observing critical effects in the elastic properties, a possi-
bility which motivates us to explore further the elastic
properties near the Peierls transition.

In this Letter, we give a renormalization-group treat-
ment of the effect near the Peierls transition of coupling
between elastic and CDW degrees of freedom in quasi-
one-dimensional crystals. At long wavelengths, we find
that the problem is equivalent to that of an elastic fer-
romagnet, up to irrelevant operators. Such magnetoelas-
tic systems have been studied thoroughly, ' and we bor-
row from these investigations the result that the elastic
degrees of freedom are irrelevant near T„allowing us to
show that the singular contribution to a typical elastic
constant k takes the form

where r= (T—T, )/T„ th—e factor C(r) is the singular

+ —"
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where k is the CDW wave vector (whose magnitude is

2kF), and the tensor g, t, reIIects the symmetry properties
of the underlying undistorted crystal. We couple the
CDW order parameter y to the local displacement vec-
tor u(x) by replacing all constant parameters in F by
functions of u, and augmenting F by adding the elastic
term F", obtaining the total free energy F'"=—F+F",
where

(2)

el I dF T ' d X X,gbpd M~b Qpd ~ (3)

In Eq. (3), u,b=(8, ut, +St u, +8,u, 8tu, )/2 is the strain
tensor, and X b,d is the tensor of bare elastic constants.
We work in Lagrangian coordinates so that x always

contribution to the specific heat, Xo is the bare elastic
constant, and k[ is a known function of the bare
phonon-CD% coupling constants, to be given below in

Eq. (6). As the specific-heat exponent a satisfies
—I & a & 0, the singularities in C(r) are cusps. Crys-
talline symmetry dictates, through the factor X~, that
only certain elastic constants acquire these cusps in their
temperature dependence. Our analysis also implies that
the tensor of thermal-expansion coefficients shows cusps
as functions of temperature with the same exponents.
This specific-heat-type singularity in elastic constants
and thermal expansion, induced by the CDW, has a
magnetic counterpart predicted in recent work by Chan-
dra. Estimating the Ginzburg criterion using experi-
mental data, we conclude that the critical region should
be observable, in agreement with the experiments of
Girault, Moudden, and Pouget, as should be the elastic
singularities described here.

We begin by assuming that the critical behavior of the
complex CDW order parameter y may be adequately
modeled, in the absence of elastic deformations, by a
coarse-grained free energy

F=„d x —
~ tlt ~
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1990 The American Physical Society 2799



VOLUME 64, NUMBER 23 PHYSICAL REVIEW LETTERS 4 JUNE 1990

refers to positions in the undistorted system. As the free

energy is invariant under translations and rotations, the
quantities r, k, w, and g,b can only depend on the dis-
placement field u(x) through the strain tensor u,b(x)
and, thus, can be expanded in the form r =r +r,b u, b

(2)+ rahu'd uab ucd +
First, we examine how the coupling of the CDW to

elasticity aA'ects the fixed-point structure of the system.
After completely expanding the free energy in powers of
the displacement field u(x), power counting shows that
the only relevant nonlinear coupling induced by the elas-
tic degrees of freedom has the form r,b u, b i yi . In

determining relevance, we are operating within the con-
text of the momentum-space renormalization group and
the e expansion. To determine the critical properties of
the coupled system it is thus sufficient to consider the
relevant free energy

F" = d x i yi + —'V, y*g~b Vby+ i yi

t

+ — d xk,b,du, bu, d+ —. d xr, b u, b i
yi'. (4)

In Eq. (4), we have made the auge transformation
exp(ik x)y to eliminate k and have replaced

the strain tensor by its linearized version, u, b =(B,ub

+tlub, )/ .2
We now orient the coordinate axes so as to diagonalize

g,b', and then suitably rescale the spatial axes and dis-
placement field u to transform g,b' into B,b. The result-

ing free energy is identical in form to Eq. (4), except
that g,b is replaced by B,b. It is then equivalent to the
free energy of the anisotropic elastic ferromagnet studied

by de Moura et al. Their work shows that elasticity is

irrelevant near the Peierls transition whenever the
specific-heat exponent a of the rigid system is negative,
as is the case for the three-dimensional x-y model, i.e.,

Eq. (4) decoupled from the displacement field. '

Accordingly, it is permissible to extract the singular
parts of the renormalized elastic constants and the
thermal-expansion tensor a,b from an eA'ective free ener-

gy F' [u,b] which is computed using the following
prescription: Expand exp( F) in powers o—f the linear-
ized strain tensor u, b to quadratic order; integrate over

y; and reexponentiate, while keeping all singular terms
to leading order in a gradient expansion. '' By singular
terms we will henceforth mean terms which produce ei-
ther cusps or divergences in either elastic constants or
thermal-expansion coefficients at T, . We thus obtain the
singular corrections to F' due to the fluctuations in y.
This procedure leads to the eflective free energy

F' [u,b] = d x [ —' (&,b,d+ &.,b,d )u, bu, d +a,bu, b],

where

bk~b~d = rab r~d C(r), o~b =rab D(r),Igloo
Igloo)

I, --0" (2z)-i 2 2
(6)

( ) is an average over y in the rigid theory, C(r) is the
singular part of the specific heat, and i jr ik is the Fourier
transform of i y(x) i . It is sufficient to treat F' [u,b] in

mean-field theory. Accordingly, we can read oA' the re-
normalized elastic constants X;b,d=X,b„d+&.,b,d, up to
nonsingular corrections. The fluctuation-induced stress
tensor cr,b generates a nonzero equilibrium value (u,b)
for the strain tensor. The rate of change with tempera-
ture of (u,b) determines the singular part of the ther-
mal-expansion tensor 6a,b through Ba,b =d(u, b)/dT, the
most singular part of which is given by

-(o)

T
C (r )Xabcd rc~d (7)Ba,b

=

where X,b,d is the compliance tensor conjugate to X,b,d,
r" = r~ /r, a—nd we have used the fact that up to non-

singular terms, dD(r)/dr = r" 'C(r). Fr—om the renor-
malization group, it is known that for r in the critical re-

gime,

c(.)-c i. i
'(I+c i.i'")

+non-cusp-producing terms .

The theoretical values of —a and vs are 0.008~ 0.003
and 0.521 + 0.005, respectively. ' The experimental
values of these exponents have been measured for the
superfluid transition in He giving values in agreement
with theory. " From Eq. (8) we see that for r asymptoti-
cally close to zero, C-

i
r i

', while at currently experi-
mentally accessible values of z we expect this term to be
dominated by the correction to scaling, so that one seesc- i.i'-"

Equations (6) and (7) are the principal results of this
Letter and have several observable consequences. First,
the specific heat, elastic constants, and thermal expan-
sion all share the same additive singular temperature
dependence, C(r), which would be observed to scale as". Also, the amplitude ratios

C+/C, for r very small,

C+Ci/C —C —, for r small,

can be independently extracted from the temperature
dependence near T, of any given elasti. c constant (such
as Skill l), any element of the thermal-expansion tensor,
or the specific heat itself, which provides a consistency
check. In the event that experiment can probe the true
asymptotic behavior, C(r) —

i r i
', the ratio 8 =C+/
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C- is universal, with a theoretical value' 2 =1 —4a
= 1.03+ 0.01.

Second, in ratios of the form N, b,d. (r)/Hp'b'c. 'd'(r), the
factor C(r) cancels, leaving the ratio of unrenormalized
microscopic parameters,

(1) (l)1 (J) (I)r b r~d ir, 'b'r d . (10)

Similarly, takin the ratio Ba,b (r)/Ba, b (r) leaves

7.,b,dr, 'd' /k, i„d r, d, w. ith the compliance tensor ).,b,d

readily computable from the background elastic con-
stants k,b,d. Thus, for this CDW system, one can extract
quantitative microscopic information from critical prop-
erties.

Third, crystalline symmetry introduces constraints.
For example, in the orthorhombic coordinate system ap-
propriate to TaS3, r,b' is diagonal and only the longitudi-
nal elastic constants k„„and k«bb would acquire
cusps.

Fourth, for temperatures outside the critical region,
the fiuctuation corrections to the elastic constants and
thermal expansion would be controlled by Gaussian-
fluctuation corrections to the specific heat, i.e. , C(r)

This is the regime of applicability of Chan-
dra's analysis of the magnetic susceptibility, in which

she predicts that the derivative of the magnetic suscepti-
bility dg/dT acquires the singularity associated with the
Gaussian specific heat, i.e., dg/dT- i r i

The critical singularities in elastic constants and
thermal-expansion coefficients predicted in Eqs. (6) and
(7) represent departures from a mean-field behavior.
Their observability depends on the width hT of the
fluctuation-dominated critical regime. Traditionally, this

range is characterized by the Ginzburg criterion, '

T ka

Tc g hC

in which g is the correlation length of the fluctuations at
temperatures well above T„and h, C is the mean-field
specific-heat jump. This form of the Ginzburg criterion
gives reasonable results for the superfluid transition in

He. Furthermore, it is built exclusively from experi-
mentally accessible quantities. Ginzburg-Landau theo-
ries can be derived from microscopic models in certain
cases such as the BCS superconductor' and the single-
chain CDW. ' Then the Ginzburg criteria can be reex-
pressed in terms of microscopic parameters in the form
AT/T, —(T,/FF), where F~ is . the Fermi energy. How-

ever, for the real three-dimensional CDW transition, this
specialized form cannot be appropriate because the
single-chain Ginzburg-Landau theory does not correctly
account for interchain coupling.

We now apply Eq. (11) to K03Mo03. From Girault,
Moudden, and Pouget, ' the correlation volume at 300 K,
constructed from correlation lengths in three perpendicu-
lar directions, is g' =480 A'. hC for Ko 3Mo03 is uncer-
tain because it must be estimated from data which are

influenced by fluctuations, and because measurements by
several groups vary substantially. Kwok and Brown
found 3.6 Jmol 'K ', Konate' quotes 2 Jmol 'K
and from Johnston we estimate 1.3 Jmol ' K '. These
values give widths h, T of 15, 20, and 120 K, respectively.
In light of the approximate nature of Eq. (11) these
numbers should not be taken too seriously; however, they
suggest that the critical regime should be observable
near a Peierls transition and, with it, the elastic singular-
ities predicted above.

Recent experiments ' measuring Young's modulus of
TaS3 seem to be consistent with our prediction of a cusp
with power-law i r i

' over a temperature range with
half-width h, T-10 K.

In summary, we have analyzed the critical behavior
near the Peierls transition in quasi-one-dimensional ma-
terials within the framework of the renormalization
group and find that the elastic constants and thermal-
expansion coe%cients have the same critical behavior as
the specific heat. The asymptotic critical behavior is

dominated over a particularly narrow range of tempera-
tures because the specific-heat exponent is close to zero.
On the other hand, experimental data suggest that the
critical region is rather wide. Therefore, we expect that
the observable singular behavior will be dominated by
corrections to scaling. Finally, the results presented here
may also be applicable to elastic anomalies near the
transition to the conventional superconducting state,
should the critical regime be observable.
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