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Squeezing via One-Dimensional Distribution of Coherent States

J. Janszky
Research Laboratory for Crystal Physics, Hungarian Academy of Sciences, P 0 B. o.x l32, H l502-Budapest, Hungary

An. V. Vinogradov

P. N. Lebedet. Physical Institute, 117333Moscow, U. S.S.R.
(Received 31 March 1989)

It is found that strong squeezing can be obtained by special superposition of coherent states along a

straight line in the a plane. This mechanism opens new possibilities for squeezing, e.g. , of the molecular
vibrations during a Franck-Condon transition induced by a short coherent light pulse.

PACS numbers: 42.50.Dv

Recently, a lot of interest was paid to the idea of squeezing' from both fundamental and practical points of view.
The majority of the physical proposals for obtaining squeezed states is based on the employment of some two-photon
process. In Ref. 3 an interesting new possibility for squeezing was suggested, namely, the superposition of the vacuum
with the one- and two-photon state. In this paper we will show that an effective squeezing can be achieved by superpo-
sition of coherent states along a straight line on the a plane. (For this aspect of the graphic representation of squeezed
states, see Ref. 4). We shall also give an example of a physical process leading to such a superposition.

First, let us consider superposition states defined by

( a, ~ )—=c+. ( ( a) ~
(

—a)), c+ = [2[I + exp( —2 ( a (')]]

b[a, ~)=ac f. 'c [a, ~), b [a, ~)=a (a, +), (a, +)a', —)=0, (2)

where
~
a) is the usual coherent state b

~
a) a

~
a) and b is the annihilation operator. Similar states have been discussed

recently in Refs. 5-9. For the sake of simplicity let us suppose that a x is real We c.an see that
~
x, +) is squeezed,

ab2 = —,
' —x'/[1+exp(2x')], (3)

where b~ and b2 are the Hermitian quadratures of the annihilation operator b b~+ib2. The maximum squeezing is at
x=0.80 where for the variance Aber we find 0.111 instead of the corresponding vacuum value 0.25. The other state

( x, —) does not show any squeezing though it is antibunched. The squeezing can be further enhanced if
~ x, +) is su-

perposed with the vacuum state

~x,p)—= [2+2exp( —2x )+4pexp( —x /2)+p ] 't (~x)+p~0)+
~

—x)), (4)

with a minimum value of hb2 =0.0651 at x =1.57 and p =1.35.
An even higher level of squeezing can be obtained by the generalization of (I) and (4),

i [F(x)])=-cF„F(x)ix)dx, (5)

cF =J J F(x)F(x')exp[ —(x —x')'/2] dx dx', (6)

where, based on the analogy with (1) and (4), we supposed that F(x) is a positive and even function. It is also assumed
that the integrals

((b )"'b")=cF„„F(x)F(x')exp[—(x —x') /2]x x'"dxdx'

exist. Comparing Eq. (5) with Glauber's well-known expansion'

(f) =—'
) a)f(a*)e """~'d'az" (8)

where f(tt*) is an analytical function of a, we note that (5) is not a particular case of (8) because there is no analyti-
cal function f(a*) leading from (8) to (5). On the other hand, Eq. (5) can be considered as a special case of the com-
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plex P representation. '' We shall see that in expanding Eq. (5) such important nonclassical states as the squeezed and

the amplitude squeezed states have an especially simple form.
For the variances of the quadrature bq from (5) after symmetrization over the integral variables we obtain

hb2 =0.25 —0.25cF F(x)F(x')exp[ —(x —x') /2](x —x') dxdx'. (9)

We can see that for any positive even function F(x), integrable in the sense of (7), the state defined by (5) is squeezed

except for F(x) =B(x) describing the vacuum state.
Special choices of the distribution function F(x) give us the states of expressions (1) and (4). Another special choice

is the Gaussian distribution

F(x) =z '
y '(1+y') ' exp( —x y ) c =1 (10)

For the investigation of the statistical properties of our distributed coherent state it is convenient to find its charac-
teristic function

g(ri) =Tr[pexp(rib —ri*b)] =cF dxdx'F(x)F(x')exp[ —
—,

~ ri ~

+rix' —ri*x —(x —x') /2],

g=p+iv. For a rather general class of states with

coherent, chaotic, and squeezed features this characteris-
tic function has a Gaussian form '

g(ri) =exp( —Mp Kv + G—p v 2iPp+ 2—iQv),

gb2=K/2, gb2=M/2,
(i 2)

where P+iQ =W is the coherent signal. The squeezing
is absent when M=K and G=0. For pure squeezed
states we have

4MK —G =1. (i3)

In the case of the state defined by (5) and (10) the
characteristic function has a simple form

1+&2 2g(ri) =exp —,p' — y v'
i(i+&')

(i4)

This characteristic function is a special case of Eq. (12).
Satisfying condition (13) it describes a pure squeezed
vacuum state with variances

~b'= y ~b'=+ 2

4
' 4(i+ ') (is)

Thus we showed that a Gaussian distribution of coherent
states along a straight line is a minimum uncertainty
state, and for y &&1 manifests strong squeezing.

Equation (5) can be generalized in an obvious way by
taking the distribution not along the real axis but along

any straight line. Furthermore, one can construct a
one-dimensional distribution along any contour in the a
plane. For example, using a distribution along an arc

~
If(y)]&=cf ~" deaf(y) ~ a,e"&,—

one can model the amplitude squeezed state. '

The significance of the integral representation pro-
posed in this paper is connected with the possibility of
finding new ways of squeezed-state generation and also
with a new aspect of understanding the nature of squeez-

ing. It simplifies some calculations with squeezed states
and allows one to treat non-Gaussian squeezed states as
well.

Let us now turn to a physical example of the distribut-
ed coherent states. The problem we will consider is a
Franck-Condon transition in a molecule induced by a
short coherent light pulse. For the sake of simplicity we

shall give the solution of this problem for a two-level
one-mode electron-vibrational system. Let ~i) be the
ground state and

~ j) be the excited electronic state of
the molecule. Suppose that due to the electronic transi-
tion i j there is only a shift in the harmonic vibration-
al potential and no frequency change. Our aim is to
study the vibrational state properties of the electronically
excited state. For that reason it is convenient to consider
the molecular vibrations in the variables connected with

the excited state. Using these variables we can write the
adiabatic Hamiltonians for each electronic state as

H; =8;+ hcob b+ha)g(b +b),
Hi =ei+hcob b.

(i 7)

D HiD =El + AN& b f(. =bi g 6 co (i9)

From (19) it can be seen that the ground-state vibration-
al wave function of (17) is a coherent state

~

—g)
=D ~0), where ~0) is the phonon vacuum state. This

simply reflects the fact that the ground-state wave func-
tion of a harmonic oscillator in respect to a shifted po-
tential looks like a coherent state.

The whole Hamiltonian, which also includes the reso-

Here t. ; and t.~ are the electronic energy levels, co is the
frequency of the vibration, b (b) is the creation (annihi-
lation) phonon operator, and the interaction constant g is

the ratio of the above-mentioned potential shift to the
amplitude of the zero vibrations.

The Hamiltonian (17) can be diagonalized by the
well-known displacement operator D =exp [ g(b-
-b)],
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nant interaction with the external classical electromag-
netic pulse of field amplitude Eo, center frequency 0,
and reciprocal duration u, has the form

H=H;a; a;+H~a, a, +p,;(t)a~ a;+p;~(t)a; a, ,
t

I~

p,;(t). = — d~—;,t exp —i Q, t — t

p) (t) =p,*;(t),

where a (a) is the creation (annihilation) electron
operator and d, ; is the dipole matrix element for the elec-
tronic transition i j.

Let us suppose that initially at t = —~ the system was
in the ground state ~i) ~

—g). Then for times t&&u

using the first-order perturbation theory we obtain the
Schrodinger wave function of the whole system

sion of form (12) with time-dependent coefficients

2 2 2 2

W(t) =—— sin (cot)+ g cos (cot),
2g2N2+ g 2 g 2

j 2 2 2 2

K(t) =—— cos (co,t)+ sin (cot),2gN+QQ
G(t) = [M(0) —E(0)]sin(2cot), (24)

gN NBQ(t)=-g 1
—g. . . cos(cot),

2g N+0

P(t) = —g(0)sin(cot),

which obey condition (13) for all t.
According to (12) and (24) for every half a period

(cot =em, where m is a positive integer) we have

I +, t& = li, t& I

—g&+t ",« I j, t& I u, t&,2hz'«
(21)

—g 2co2/(4g2co 2+ 2u 2)

Aber

= —,
' +g co /2u, Ab ~tt b2 = —,

'
(2S)

where ~i, t) =
~
i)exp( —ic;t/h) and the vibrational wave

function of the electronically excited molecule has the
form of the unnormalized distributed coherent state

~
a(t —r)) =

~
1
—gexp( —icot)(1+icor)) . (23)

Substituting (23) into (22) we have a state of the type
(5). To find its squeezing properties let us calculate the
characteristic function (11) for

p„= iu, t&(u, t i/(u, t iu, t&.

After straightforward calculations we find the expres-

~ u, t) = drexp[ iver —(—u'/2)r']
~
a(t —r)),

(22)
a(t —r) = gexp—[ ico(t ——r)], b =n —(c, —e;)/tt .

One can see that in (22) the coherent state is distributed
along an arc with the spread depending on the duration
of the exciting pulse. For extremely short pulses

(u ~) this distribution contracts into the usual

coherent state. In this case Ab~ =Aha = —,'. For long

pulses (u «co), having an equal distribution along the
circle, (22) turns into the n-photon number state
(neo=8) with hb~ =Ab2 = —,

' +n/2 Between . these two

limits the uncertainties do not necessarily change mono-

tonously from —, to —,
' +n/2 while the excitation pulse

duration becomes longer and longer. Graphically it can
be understood if one visualizes how the

muffin

li
coherent state going through a squeezed crescentlike
shape deforms along a circle into the donutlike number
state.

Under condition u))N only a small part of the arc
contributes to the integral (22) and can be replaced by a
straight segment

while at moments t =tr(m+ -', ), hbt and Abq exchange
their values. Just after the short-pulse excitation the
state

~
u) shows a considerably narrower spatial distribu-

tion than the vacuum state, while after a quarter of the
vibrational period, on the contrary, its spatial distribu-
tion becomes wider than that of the vacuum state. The
squeezing is especially appreciable if g»u/co»1. In
this case hb

~
(0)=u /8g co .

Finally, it is worth noting that the vibrational state
~ u, t) leads to temporal modulation of the spectral
characteristics of various optical processes connected
with secondary transitions from the excited electronic
state of the molecule. In particular, in the time behavior
of the spontaneous emission spectrum for the reverse
electronic transition j i, along with earlier predicted
oscillations of the Stokes shift, '" an additional modula-
tion of the linewidth takes place due to the oscillations of
i3b~. Squeezing of hb~ up to u/2J2gco causes narrowing
of the linewidth of the time-resolved spontaneous emis-
sion spectrum up to u, i.e., to the spectral width of the
exciting pulse. It is not improbable that such types of
spectrum width modulations have already been observed
in pump-probe spectroscopical experiments in dye solu-
tions. ' Time-dependent coordinate fluctuations of the
excited molecule might also be important for two-step
selective photochemical processes proposed in Refs. 16
and 17.
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