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The widely used Tremaine-Gunn phase-space constraint giving lower-mass limits for neutrino dark
matter is extended to bosons. The occupation number for a boson gas does not in general have a max-

imum, but only a small fraction of primordial bosons in equilibrium have large occupation numbers.
Dark galaxy halos formed dissipationlessly from primordia1 bosons therefore have fairly low coarse-
grained phase-space number densities. This leads to mass lower limits in the eV range for bosonic dark-
matter candidates, only slightly smaller than for fermions.

PACS numbers: 98.80.Cq, 14.60.Gh, 14.80.—j, 98.60.—a

Elementary particles are likely candidates for explain-
ing the dark matter in halos around galaxies and in

galaxy clusters. Unfortunately their identity is not yet
known, but major eA'orts have been spent on constraining
their properties.

Among the most widely used methods for constraining
the mass of dark-matter particles is the Tremaine-Gunn
phase-space constraint' and variations thereof. These
methods work for fermions (e.g. , neutrinos) that were
once in thermal equilibrium with the primordial photon
gas. Tremaine and Gunn noticed that the occupation
number f, defined as f(p) =h n(p)/g, where n(p)dp is

the phase-space number density of particles with mo-
menta between p and p+dp, h is Planck's constant, and

g is the number of helicity states, had a maximum value
of 0.5 for a primordial neutrino gas, and by Liouville's
theorem there is also the maximum occupation number
for any coarse-grained phase-space distribution created
from primordial neutrinos by dissipationless processes.

The maximum value follows from the Fermi-Dirac
distribution, which for zero chemical potential has occu-
pation number fF(p) =1/[exp(E/kT)+11, where the
energy F is a function of momentum. When particles
decouple from thermal equilibrium, the occupation num-

bers have a maximum of 0.5. The full distribution of oc-
cupation numbers is shown in Fig. 1 for the two extreme
limits: Fermions decoupling in the relativistic regime,
fFtt(p) = 1/[exp(pc/kT)+1], and fermions decoupling
in the nonrelativistic regime, fFN(p) = 1/[exp(p /mkT)
+1). The distribution N(f) is simply the fraction of
particles with an occupation number exceeding f.

The other set of curves shown in Fig. 1 are the corre-
sponding distributions N(p) of coarse-grained occupa-
tion numbers, calculated from the "mixing-theorem" re-
cipe given by Tremaine, Henon, and Lynden-Bell.
N(p) is the maximal fraction of particles that can "be
arranged" to have coarse-grained phase-space densities
exceeding p via dissipationless processes. The distribu-
tion is constructed by calculating the mass and phase-
space volume, M(f) and V(f), of regions with fine-

grained occupation exceeding f, and defining p as
h M (f)/gmV(f). N(w) is then simply given as the cor-
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FIG. 1. Fine- and coarse-grained distributions of occupation
numbers N(f) and N(v) for fermions with zero chemical po-
tential decoupling while relativistic (lower curves) and nonrela-
tivistic (upper curves).

responding value of N(f). One notices, for instance,
that 7.5% of primordial neutrinos decoupling in the rela-
tivistic regime have occupation numbers exceeding 0.25,
whereas 15% of the coarse-grained distribution can have

p & 0.25. The similar fractions for nonrelativistic
decoupling are 39% and 66%, respectively.

Whereas N(p), in general, exceeds N(f), they both
share 0.5 as the maximal occupation number. This is the
basis of the Tremaine-Gunn argument, which in its sim-

plest version says that the coarse-grained phase-space
density of halo neutrinos cannot exceed the maximum
value of the original fine-grained density. Assuming the
dark-matter distribution to be an isothermal sphere with
core radius r„(9a /4trGpo) '/, where po is the central
density, and o is the Maxwellian one-dimensional veloci-

ty dispersion, the corresponding maximum phase-space
density is pomF (2trv ) /, where mF is the fermion
mass. Requiring this maximum to be less than g/h (a
factor of 2 included to account for equal numbers of par-
ticles and antiparticles) leads to

r ' I/4
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FIG. 2. Same as Fig. 1, but for bosons.
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Here aipo=o/100 kms ' and rlo=r, /10 kpc.
The mass lower limits obtained from Eq. (1) for ob-

served galaxies tend to be close to the upper experimen-
tal bounds on the mass of the electron neutrino. There-
fore, the precision of this equation has been extensively
discussed. For example, the choice of an isothermal
sphere for the coarse-grained dark-matter distribution
leads to overly restrictive limits on the fermion mass,
when compared to other possible distribution functions,
and even assuming the isothermal sphere, one must also
be careful when choosing the parameters for observed
galaxies, in particular the core radius, which is likely to
be larger for the dark-matter distribution than for the
observed stellar distribution.

Contrary to fermions, the Bose-Einstein distribution
has no maximum occupation number when the chemical
potential equals zero (we shall return to nonzero chemi-
cal potentials in a moment). The boson occupation num-

ber fz =1/[exp(E/kT) —1] clearly diverges for small
energies. Therefore, it has hitherto been assumed (as
originally stated in Ref. 1) that phase-space arguments
would not lead to a relation like Eq. (1) in the case of
bosons. However, as will now be demonstrated, it is pos-
sible to derive a mass limit very similar to the one for fer-
mions.

Figure 2 shows the distributions N(f) and N(p) for
bosons decoupling while relativistic (faR(p) = 1/
[exp(pc/kT) —1]) and decoupling in the nonrelativistic
regime (faN(p) = 1 [/e xp(p /2mkT) —1]), respectively.
While the occupation numbers have no upper limits, the
crucial thing to notice is that the fraction of particles
having large occupation numbers is rather small. For in-

stance, less than 10% of bosons decoupling in the relativ-
istic regime have coarse-grained phase-space density
exceeding 2g/h, and only 1% exceeds 6g/h . For non-
relativistic decoupling the occupation numbers corre-
sponding to 10% and 1% are of order 2x10 and 2x10,
respectively.

Dissipationless formation of a dark-matter halo from
primordial bosons would, from a phase-space point of
view, be most efficient if particles were preferentially

taken from the high-density part of phase space, and as
these particles have the lowest momenta, they are likely
to take part in halo formation. However, since the dark
matter in halos is expected to incorporate at least 10%
(perhaps more) of the total dark-matter abundance in

the Universe, a significant fraction of the particles must
necessarily have "low" occupation numbers. For relativ-
istic decoupling, the "typical" bosons would have occu-
pation numbers of a few. (The mean value of the occu-
pation number for relativistic decoupling is 2.4 for the
densest 10% fraction. For nonrelativistic decoupling the
mean value diverges, but the median value for the
densest 10% is 3x10 . We shall later argue that the
nonrelativistic case is probably not very relevant. ) Tak-
ing this into account, one can derive a relation similar to
Eq. (1) by comparing the assumed coarse-grained distri-
bution (e.g. , an isothermal sphere) to the "typical" fine-

grained density, parametrized by rg/h (an extra factor
of 2 may be included to add the antiparticles if they are
distinct from the particles). This results in a mass limit
for bosonic dark matter:
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Since the mass limit depends on r only through the
fourth root, the limits for boson masses are only slightly
smaller than the corresponding fermion mass limits for
any given galaxy; the exact diA'erence depends on details
of the formation process.

One should bear in mind that in spite of the similarity
between Eqs. (1) and (2), their logical foundations
diA'er. The fermion limit is "firm' in the sense that it
can be applied to any individual galaxy if one is willing
to accept the assumed coarse-grained dark-matter distri-
bution. The decisive point is the existence of a max-
imum for fF. The boson limit is only correct in a statist-
ical sense, i.e., it should be applied to a large sample of
observed galaxies. The reason for this diA'erence is the
lack of a maximum for fq One could co. nsider picking
high-density bosons from a large volume of the Universe
to make a single halo, thus getting a spuriously high
value of r for that particular galaxy, but one would get
in trouble trying to do the same trick for a large number
of galaxies, and might run out of high-density particles.

It has so far been assumed that the boson chemical po-
tential p is zero. A nonzero chemical potential must be
negative in order to avoid negative values for the occupa-
tion numbers. Such a negative potential poses a problem
because the occupation number now has a maximum,
namely, 1/[exp(i p i/kT) —ll, calculated at the decou-
pling temperature. Equation (2) can now be firmly used
choosing ~ as the maximum occupation number, and
lower values for T: may be chosen from considerations of
the specific N(~) distribution, which has to be calculated
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separately for each choice of p/kT. For low values of
~ p ~/kT, mass limits obtained in this manner closely
resemble limits for a zero chemica1 potential.

It is not within the scope of this presentation to enter
into a detailed discussion of the possible existence of
low-mass bosons. No such particles are known to exist,
and (apart from the axion) there are no obvious theoreti-
cal reasons to expect their existence. On the other hand,
there seems to be no argument against them either, as
long as they do not couple too strongly to, for instance,
photons. Should they exist, a weak coupling would indi-
cate that they decoupled while they were ultrarelativis-
tic, thus making faa the most likely original phase-space
distribution. It is worth stressing that the limits derived
in this Letter are applicable only to particles that were
once in thermal equilibrium, such as thermal axions.
They do not apply to the nonthermal coherent axions, '

which are formed in a Bose condensate, or to relic axions
from decaying axionic strings. ' '

The main purpose of this Letter has been to show that
the phase-space constraints previously used to place mass
lower limits on fermionic dark-matter candidates can be
extended to bosons. For a negative chemical potential a
conservative value of z in Eq. (2) can be calculated ex-

actly, whereas one has to study the distribution of occu-
pation numbers and rely on statistics for a sample of
galaxies in the case of zero chemical potential. The
equations given above for fermions and bosons can only
be considered to give order-of-magnitude mass limits be-
cause of the specific choice of an isothermal sphere for
the dark-matter distribution. One may construct other
coarse-grained distributions that utilize the particles
more efficiently, so as to lower the mass limits some-
what. On the other hand, one can argue that nature
was probably less efficient than theoretical astrophysi-
cists in this respect, so that the "true" mass limits would

tend to increase.
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