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We present a dynamical mechanism for completing inflationary phase transitions via bubble nu-
cleation which can satisfy all known constraints for a wide spectrum of models and parameters. The ap-
proach is a generalization of the recent “extended inflation” model which corrects a serious flaw. We
find an essentially model-independent bubble-size distribution which may be important for large-scale

structure.
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The Achilles’ heel of inflationary cosmology has been
the mechanism for completing the first-order phase tran-
sition that drives the superluminal expansion. Inflation
relies on the extraordinary expansion that results when
the Universe is trapped in a metastable, false-vacuum
phase caused by a strongly first-order phase transition.
The expansion of the scale factor R(t) by e or more is
needed to resolve the cosmological horizon, flatness, and
monopole problems.! While sufficient expansion is not
difficult to achieve in realistic models, exiting the false-
vacuum phase and restoring a hot, Friedmann-
Robertson-Walker universe has proved to be embarrass-
ingly difficult. The original “old inflation” model fails to
exit at all.' “New inflation”? and variants thereof (e.g.,
chaotic inflation,” quantum cosmology,* etc.) allow com-
pletion of the phase transition, but at the cost of fine tun-
ing of parameters in order to obtain acceptably small
density perturbations.

“Extended inflation”’ is a recent proposal intended to
produce a successful inflationary phase transition for a
much wider and more natural range of models. Unlike
new inflation, the phase transition is completed by ordi-
nary bubble nucleation— there is no need to fine tune the
transition so that the barrier between the false- and
true-vacuum phases disappears as the Universe super-
cools. Unfortunately, it was soon found that the bubbles
can lead to unacceptable distortions of the microwave
background.®’

The goals of this paper are twofold. First, we consider
a natural but important extension of extended inflation.
As in extended inflation, a modification of conventional
Einstein gravity is considered in which a scalar field ¢ is
nonminimally coupled to the scalar curvature #. Such
corrections to Einstein gravity arise in virtually every
known unified theory that couples particles to gravity, in-
cluding supersymmetry and superstring models. If the
nonminimal couplings are not present at tree level, they
are typically generated by quantum corrections. Usually
these corrections to Einstein gravity are ignored, but now

it appears that they can play a critical role in the early
history of the Universe. Only quadratic couplings of the
form §¢27? were introduced in extended inflation,
whereas higher-order couplings are generally expected as
well. In this paper, we consider a completely general in-
teraction, f(¢) R, where f(¢) =MZ2+E¢2+£E'(p% M?)
+ - -+ for small ¢. Our initial concern was that quartic
and higher-order couplings may interfere with extended
inflation. In fact, we find that the quartic and higher-
order couplings greatly enhance the scenario and permit
inflation to be completed for a much wider range of mod-
els and initial parameters.

Our second goal is to address a serious flaw of extend-
ed inflation. Bubble sizes at the end of the phase transi-
tion are distributed in a nearly scale-invariant spec-
trum,%’ with the deviation in the exponent scaling as
32&. The bubbles represent large-density perturbations
8p/p=1 on wavelengths equal to their radius. To
suppress bubbles of astrophysical size that would unac-
ceptably distort the microwave background, £ > 0.005 is
required. Otherwise, only £ <0.1 is needed to satisfy all
other constraints. Not only does the bubbles’ constraint
narrow the spectrum of acceptable models, but the al-
lowed range of & conflicts with astrophysical tests® of
Einstein versus Brans-Dicke® gravity which require
£ <0.00025.

We will present a simple scenario utilizing the expand-
ed nonminimal couplings which will result in an accept-
able distribution of bubble sizes for a much wider range
of initial parameters. The bubble spectrum is essentially
model independent, assuming no special tuning of pa-
rameters. We will also introduce a mechanism— a some-
what novel approach to induced gravity— which can re-
sult in negligibly small deviations from Einstein gravity
after inflation.

In extended inflation and our improved approach, the
nonminimally coupled field ¢ is completely independent
of the field o, the order parameter for the inflationary
phase transition. Since ¢ is coupled to the curvature, its
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expectation value contributes a correction to the effective
gravitational constant, GEMp 2=[f(¢)/16x] ~' where
Mp is the Planck mass. We consider a Lagrangian den-
sity

L=—f()R+ 50,000+ 167L maer , ¢))
u

where L nauer contains contributions of all other matter
fields including the field o, which drives the inflationary
phase transition. During inflation, we assume that o is
trapped in the false-vacuum phase of its effective poten-
tial V(o). We define the vacuum energy to be V(o)
EpFEMﬁ‘ Unlike new inflation models,> a non-
negligible energy-density barrier, ~MAR, is assumed to
separate the false- and true-vacuum phases. Hence, the
bubble nucleation rate per unit volume A is exponentially
small. We assume that the potential for ¢ is negligible
or zero.'® The semiclassical equations are simple to ana-
lyze if we recast the model in a form reminiscent of
Brans-Dicke theory.® Let ®=f(¢) replace the scalar
field. [® has the dimensions of (mass)2.] The Lagrang-
ian density is

L=—oR+ 2@

6,}13 OB ]67!'o£matler 5 (2)

(®d) can be written as f/2(f")?, where f'=df/do.

For simplicity, we will consider f(¢)=£&(¢2+¢" "%/
M"), n>2. A leading constant only adds to the net
amount of inflation (which is unnecessary) and a greater
sum of higher-order couplings does not substantially
change the scenario. For ¢ <M, the quadratic coupling
dominates and w(®) =1/8& =const, the standard Brans-
Dicke result.> For ¢>> M, though,

o (@) =[2(n+2)2¥"+ 2]~ @/M )~ +D)

becomes @ dependent. The equations of motion are

1

St 3 = B ez
d+3HD Y 8r(p—3p) —0'®°], 3)
kK 8mp b o)
H2+__=_”£__H+ﬂ -
R 3 o 6 ||’ @

where H=R/R is the Hubble parameter, o'=dw/d®,
and p and p are the energy density and pressure due to
the matter fields. During the false-vacuum phase, V(o)
dominates the energy density and p—3p=4pr. For
6 <M and w=1/8¢, the solutions are the same as those
exploited in extended inflation:

() =0, (1 +Hpt/a)?,

(5)
R =R,(1+Hyt/a)*'?,

where a?=(3+20)(5+6w)/12=~ w? and the subscript
b will be used to denote values when inflation begins.
R (1) grows as a power law in time, rather than the ex-

ponential obtained for Einstein gravity.

In Ref. 5, it was shown that the slowing from exponen-
tial to power-law inflation is sufficient to allow a phase
transition from false- to true-vacuum phase to be comp-
leted by ordinary bubble nucleation. Briefly, the frac-
tional volume remaining in the false-vacuum phase after
time ¢ is

Ji%

The physical volume trapped in the false phase is, there-
fore, Ve =psR3. If R(t) grows exponentially and A is
indeed small, V¢ increases exponentially forever and the
transition is never completed. If R(z) grows as a power
for a sufficiently long time, though, Vr begins to de-
crease exponentially (and the transition is completed)
once the exponential decrease in p,(z) outruns the
power-law growth in R(r). Typically, R(z) 1% has
grown much more than the necessary 60 e-foldings be-
fore completion. The problem, though, is the distribu-
tion of bubbles that results:’

|
(1+H,xo)¥*

3
pr() =exp [— RV dz'] . ®

F(x>x¢)~ , ©))
where F(x > xo) is the fractional volume occupied by
bubbles of proper radius greater than xo and H, is the
value at the end of inflation. To avoid distortion of the
microwave background, we require F(x > xg) to be less
than 10 ~* for bubbles of supercluster scale, H,xo= 10%°.
This implies w <25 (or £> 0.005), in conflict with ob-
servational bounds.®

We find that quartic and higher-order nonminimal
couplings have the desired effect of slowing the expan-
sion even more dramatically. The couplings can be in-
corporated in a rather natural scenario that results in an
acceptable bubble-size distribution for a much wider
choice of initial conditions and parameters: First, ¢ is
much less than M so the quadratic coupling dominates
f(¢). The expansion proceeds as in extended inflation in
this initial stage. Second, ¢ increases to near M, and the
higher-order couplings become important. The scenario
requires that the nucleation rate A is so small that p,(z)
is still very close to unity by the “crossover” time,
t=t.=w./H. when ¢~M. That is, p,(z.) is still very
close to unity so that the final fractional volume occupied
by bubbles produced before ¢, is negligibly small. Since
A varies exponentially'' for relatively small adjustments
of the energy barrier of V' (o), this condition can be
satisfied for natural, untuned choices of V(o) and
wp>1. For t>1, o becomes ® dependent, and the
solutions are for n =2,

(1) = d.exp(2At/t.) ,
(8a)
R(t) = R explo.(1 —e ~27)],
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for n> 2,

®(1) =~ (1 — yAt/r,) @ +9/Q=m)
(8b)
R(1) = R exply'w [l — (1 — yAt/1,) /= D] |

where At=t—t., y=m—2)/(n+2), and Y =(n+2)/
2n. The striking feature is the rapid deceleration of R(z)
and the rapid acceleration of ®(¢z). Third, as ®(z)
diverges, w(®) < ® ~7 approaches zero and the character
of the solutions changes once again. In the first equation
of motion, Eq. (3), the prefactor approaches a constant
for @< 1. Consequently, the solutions reassume the
form they had in extended inflation, ®(¢) <¢? and
R(1) t®*'2 Inflation is completed when o drops
below 3 and R(z) no longer scales superluminally. The
key feature is that, for essentially arbitrary initial values
of , natural choices of V(o) (and, thereby, A) can be
made so that @ <25 and typically O(1) during the final
throes of inflation when the majority of bubbles are nu-
cleated. From previous calculations, we anticipate that
an acceptable bubble distribution results for w in this
range, and, hence, a successful inflationary transition re-
sults. Of course, the effects of a small @ in the later his-
tory of the Universe are worrisome; we will introduce a
mechanism to address this issue after considering other
constraints.

(1)  Sufficient inflation, reheating, and 8p/p
<10 ~°.— The constraints that require fine tuning in
conventional inflation models are easily satisfied here.
The net inflation is (a) the inflation before ¢,
R()/R(1p) =[®(t.)/®(2,)]1""% [see Eq. (5), plus (b)
the inflation after ¢, R(t.)/R(t.) =e"" [see Eq. (8)],
where w.=w(p= M) =1/32¢. Supercooling begins at
®(1,) ~M# when the Hawking temperature falls below
the critical temperature for the o-field phase transition.
Hence, the necessary 60 e-foldings of inflation' are ob-
tained if either (a) w,=1/86>2 and [®(z)]'"?
~VEM > 10”* My or (b) w.=w,/4> 60, where w is
the value at the beginning of inflation. For example, (a)
w, =10 and M > 103Mf or (b) w, > 240 satisfies the
constraints. Reheating occurs by bubble-wall collisions
and subsequent rethermalization.'' The average temper-
ature should be ~ Mg, the critical temperature of the
o-field phase transition. The contribution to 8p/p due to
fluctuations in ¢ is a nearly scale-invariant, adiabatic
spectrum of fluctuations with amplitude &p/p=2
x10 "2H?*/¢ evaluated during the last 60 e-foldings of
inflation.'> At 1., the constraint is already satisfied if
M > 240(w;)**Mr. However, this bound is much too
conservative: Smaller values of M are acceptable be-
cause 8p/px H?*/¢ decreases exponentially after ¢,
(which typically include the last 60 e-foldings).

(2) Bubble-size distribution.— By the assumptions of
the scenario, only bubbles produced after ¢z, occupy a
non-negligible fraction of the Universe, ps(z.) = 1. Su-
perluminal expansion ceases once o falls below L. Al

2742

though the transition may not yet be complete, bubbles
produced after this time remain less than H ~!in radius,
too microscopic to affect large-scale structure. We shall
refer to the time when the expansion becomes sublumi-
nal as t;. First, consider the large bubbles produced be-
tween t =t. and r =t,. The bubble-size distribution can
be expressed as dN/d(H.x) =€(t9)/(1 +H,.x)* where
x=x(t,,t9) is the physical radius of a bubble produced
at time ro measured at the end of inflation. In old
inflation, € is time invariant and the distribution is scale
invariant;'? in extended inflation, e(ro) o (1+ H,x) ~ ¥
produces a small deviation from scale invariance,’ result-
ing in too many large bubbles unless w, <25. Here

e 1/H*(19) e ¥
for n=2 and
€ (l —_ }'Al/l()(4"+8)/(2—")

for n>2. Using x(t,19)=R(T) [/ [dt'/R(")], we find
that e [In(1+Hx)w,] % and, hence, the fractional
volume occupied by bubbles of radius greater than xg is

CVT([;)
[(1/o")n(1 +H.x)+ 114

F(x > xg) = — 9)

where ' =w, = +, and =1 for n=2 or o' =y'w, and
B=(n+2)/2n for n>2. V() is of order unity times
the volume fraction of true vacuum at t;, (H,xo=<1).
The fraction of the Universe that still remains in the
false phase after ¢; is percolated with bubbles with radius
H.x <1. For xq of supercluster scale, M= 10" GeV,
and ® = M3, we have that H,xo= 102° and F(x > xg)
<10 ~% for ®,~1, which is small enough that the mi-
crowave background should not be unacceptably distort-
ed. Yet, if V(¢ is not too small, the distribution may
provide a sufficient number of moderate-sized bubbles to
be of interest for large-scale structure.

We wish to emphasize that the predicted distribution
is nearly n independent and only depends on broad, easi-
ly obtained conditions on A. Note that the form for
F(x > x¢) assumes o decreases from some large value to
o <0.5 at the end of inflation, which applies for most
choices of f(¢). It is also possible to choose f(¢) so
inflation ends with @ = const > 1, which produces a bub-
ble distribution as in Eq. (7), but a broader range of
choices lead to the distribution derived above.

(3) @>500 today.—The most worrisome aspect of
the scenario is that w, is much less than the observation-
al bound based on time-delay measurements,® o > 500.
Therefore, we introduce a simple mechanism—a some-
what unconventional approach to induced gravity— that
could make @ > 500 today even though w, ~1.

The mechanism takes advantage of higher-order con-
tributions to f(¢). Recall that w(¢) =f(¢)/2[f'(¢)]1°.
Previously, we only discussed the case where w is con-
stant (in extended inflation) or decreases with increasing
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¢. While this may be true as the first ¢-dependent terms
in f(¢) become important, it is certainly conceivable that
f(¢) reaches a maximum at some value, ¢,, where
0. <0m. A simple example is f(¢)=MZ>+Ep?
—a(p*/M?), with a <&. By definition, f'(¢,,) =0, but
there is no reason to expect f(¢,,) =0. With such a non-
monotonic f(¢), w diverges as ¢ approaches ¢,,. As
w— =, ¢ ceases to vary with time and the model is
indistinguishable from Einstein gravity with M3
=f(¢,)/16n=d,,. Rather than fixing Mp via an ordi-
nary potential for ¢, as in conventional induced gravity,
we have fixed Mp by freezing out the w-dependent kinet-
ic energy for ¢.

This mechanism can be useful in driving @ to an ac-
ceptably large value after superluminal expansion ceases
at time #,. First, @ increases considerably after ¢; in typ-
ical cases, at least until the time when bubbles percolate
or, equivalently, when the argument of p,(1) grows
larger than unity. @ then grows by an additional factor
of 5 or so as the vacuum-dominated epoch converts into
a radiation-dominated epoch (see Appendix of Ref. 6).
With this additional growth in @ after z;, the higher-
order terms become important and, by the mechanism
described above, w can be driven to > 500.

Once the Universe fully enters the radiation-
dominated epoch after bubble percolation, the equation
of state becomes p—3p=0. From the equations of
motion, we find that ®— 0 (independent of the value of
o), and the Universe is indistinguishable from conven-
tional Friedmann-Robertson-Walker universes. The
change in @ and, hence, G, after matter domination is
negligibly small. After the Universe cools to the mat-
ter-dominated epoch, p—3p=p=0, and ®ac¢?/@+3),
As @ increases further, o diverges even more, so that
there continues to be no discernible distinction from or-
dinary Einstein gravity.

Our numerical computations have verified that all
inflationary and astrophysical constraints can be satisfied
for plausible, untuned choices of f(¢) and V(o). For
example, M =10'"" GeV, My=10" GeV, f(¢p)=M">
+¢2—0.1(¢*/M?), and V(o) =ME+MPpc*—2.5Mra’
+1.10* satisfy all known constraints. (Coefficients are
chosen so that v =0 at the minimum.)

We conclude that generalizing the extended-inflation
concept to include higher-order couplings is not only nat-

ural, but greatly expands the range of models and pa-
rameters which can lead to successful inflation. In the
process, we have developed a novel approach to induced
gravity, and we have discovered a simple, essentially
model-independent prediction for the bubble-size distri-
bution, Eq. (9), which should now be analyzed for its po-
tential effect on large-scale structure. The robustness of
this approach makes inflation seem significantly more
plausible. To the extent to which inflation is an attrac-
tive approach for resolving cosmological problems, the
success of this scheme represents, perhaps, a compelling
argument for modifications to the conventional Einstein
theory of gravity even though direct evidence for such
modifications may be difficult to detect.
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