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The metric perturbation produced by a collapsing *“knot” of global texture in a flat background is cal-
culated. This is used to calculate the energy shift for photons traversing such knots, leading to a predic-
tion for the microwave anisotropy pattern produced in the global-texture scenario for large-scale struc-
ture formation. The metric is also used to calculated the velocity field induced in nonrelativistic matter,
on scales well inside the horizon. This would produce an early generation of small gravitationally bound
objects. At larger scales, the texture field would induce coherent velocity fields on a scale comparable to

that seen in galaxy surveys.
PACS numbers: 98.80.Cq, 12.10.Dm, 98.70.Vc

Global texture has recently been proposed as a mecha-
nism for generating large-scale structure in an initially
homogeneous universe.! The main assumption necessary
is that a non-Abelian global symmetry be broken at a
scale of order the grand-unified-theory (GUT) scale.
This generically leads to the formation of a topological
defect known as “texture,” related to the third homotopy
group m3 of the vacuum manifold. Texture “knots” are
regions where the Higgs-field winds around a three-
sphere in a nontrivial way: This is generally the case in
regions larger than the horizon. As knots come inside
the horizon, they collapse at the speed of light, down to
the inverse GUT scale (i.e., essentially to zero size)
whereupon they unwind themselves. In the process they
emit a spherical shell of outgoing massless (Goldstone
boson) radiation. Our main concern will be the effect
most likely to rule out (or confirm) the scenario, the im-
print produced by texture on the microwave background.

The simplest models in which global texture is pro-
duced involve the breaking of a global SU(2). This
might be a family symmetry,? or simply an extra global
symmetry rotating two or more Higgs fields into one
another. For example, in a SO(10) GUT one can im-
pose an SU(2) symmetry between two 126 fields. The
only parameter which is important in the texture
scenario is 7, the magnitude of the vacuum expectation
value of the Higgs field. This is a nice feature: The
theory is independent of scalar self-couplings or the
shape of the Higgs potential. In simple GUT’s, n is
directly related to the unification scale, determined from
low-energy physics. In these theories, the texture
scenario has no free parameters and is thus highly
predictive.

The simplest case occurs where a global SU(2) is bro-
ken by a complex doublet ® (which we shall write as a
four-component real field). The SU(2) symmetry breaks
as the Universe cools through a temperature of order the
GUT scale, and the initial conditions for ® are specified
by its being in thermal equilibrium, with the resulting fa-
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miliar “random domain” picture.’ As the Universe ex-

pands, the scale of spatial variation of ® grows at the
speed of light.'

Using a code developed by Press, Ryden, and Sper-
gel, we have simulated texture in expanding back-
grounds. The results will be reported shortly.® In the
simulations, we see the scale on which ® varies growing
with the horizon, as expected, and the number of knots
per unit comoving volume n collapsing per unit confor-
mal time 7 as

dnldr=c/t*, 1

with ¢=1 in the matter era.’> [Conformal time is
defined from dt =a(t)dr, with a(t) the scale factor.]
This is the texture “scaling solution.”

We also observe that the knots rapidly become quite
spherical as they collapse, presumably because it is only
the “S-wave” mode that is constrained to collapse by the
topology, while other modes radiate away. In this paper
we shall calculate the metric and microwave-background
distortion produced by the exact spherical texture solu-
tion in flat spacetime, which we recently discovered:®
This should be a reasonable approximation to the realis-
tic case when the scale of interest is smaller than the
horizon scale.

On large scales (much larger than the inverse GUT
scale) the evolution of @ is accurately described by the
nonlinear o model, "
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where ®“ a=1-4 are the four real components of ®.
With the spherically symmetric Ansatz ®“=n(cosy,
sinysin@cosg, siny sinfsing,siny cosd), where 6 and ¢ are
the usual polar angles, in flat spacetime (2) becomes
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For a unit-winding-number knot, y ranges from 0 at the
origin to r at infinity. The exact spherical solution to (3)
describing the collapse and unwinding of a texture which
we shall use is®

2arctan(—r/t), t <0,
x=12arctan(r/t)+nx, t>0, r<t, (4)
2arctan(¢/r)+x, t>0, r>1t.

The o-model solution is matched through the singularity
by the requirement that there be zero winding number
after collapse; the value of y at the origin is then dictated
by spherical symmetry. The stress-energy tensor calcu-
lated from (4) is

This solution has a mass which diverges at large r:
M <, =arn[§ridr T =8xnr (with exact equality at
the instant of collapse, t =0). We will have to cut this
off at a scale corresponding to the size of a realistic knot,
of order ¢ when it collapses.

To calculate the metric perturbation produced by (5),
it is adequate for our purposes to work in the weak-field
approximation since Gn>< 1. It is convenient to work in
the gravitational Coulomb gauge, specified by the condi-
tions ho;; = ¥ hii 0, and hijx x = + hxx.i. [Our conventions
are g, =nu+h,, n,=diag(—1,1,1,1). Greek indices
run from O to 3; Latin ones from 1 to 3.]

In this gauge, and using spherical symmetry, A,, may
be completely determined from equations which involve
no time derivatives. Thus one is left with only radial in-

2 2
Too= __r_2_+_3%7n2 , tegrals, which can be performed analytically.’
(ri+1?) Parametrizing h,, by four functions of r and t, hoo=H,
T = —xi 4t 2 ) hoi =Ix', and h;; =Jx'x’+Ké&", one solves for H, I, and
0i (r2+t2)z s hix from Einstein’s equations, and then determines J and
p2—g2 K from hyy using the second gauge condition above. The
T, =28—5—551" result, with the boundary condition that h,, vanish at
(r 2 + t 2) 2 H
1 r=0,is that
1 1
He=—2e{ln|1+ +3 —-arctan —1|t, Ic=—2et ——+—3arctan +— 1,
t r r t 3t
6)
1 2 1 r 2 r? [ S r
Je=—¢€|— ——;t—garctan , Kc=e|—=Ihn|l+— |+———5+—Farctan|— ||,
¢ [3r ré oo’ [t] ¢ 6[ 3 t? 9 32 37 t
where e=162Gn? and the subscript C indicates

“Coulomb” gauge. These coordinates have the nice
property that at finite radius and for large negative or
positive times the metric is the Minkowski metric, so
particle and photon trajectories are easy to interpret.
Unfortunately, H¢, Ic, and K¢ are singular at ¢ =0.
This is a coordinate singularity, as may be seen by
changing coordinates to x" =x*+&# with & =2¢e(t

xIn|t/r.| —t), & ="%ex;In|t/r.|, in which the metric
is given by h,, =h,,—&,,— &, . Then
r2
H=—26{ln +i? +3 ——arctan[l ]—l}}
r;
l=-—26t[—%+%arctan[—r-”,
r r t
(@)
_ 1 1?2 1] r
J=— [5’-—2—74'7-5‘2“@13“ l?] s
_ 2 rl+i 1 t? t3 r
K=¢ —;ln .2 +;—?r-+?arctan ; .

Here we choose r. to be a scale of order the inverse
GUT scale, where the o-model approximation breaks
down. The metric (7) diverges logarithmically at large r
and large 7. In the domain of interest, however, A, is

small and the weak-field approximation valid. The
large-r divergence has an interesting and simple geome-
trical interpretation. The spatial hypersurfaces have a
metric

1—%eln [LH(dr2+r2d92). (8)
Changing variables to dF=[1— 5 eln(r/r.)]dr, i,
F=rl1+ 3 e— 3 eln(r/r.)], this yields (to order ¢)

di*+7(1— tedda?, )

which is just flat space minus a solid angle 8r¢/3
=12872Gn?*/3. This geometry is exact at 1 =0, reminis-
cent of the result for a static global monopole.® Our re-
sult for the missing solid angle is just § of theirs.

We wish to integrate the geodesic equation for photons
traversing a knot metric—the usual “Sachs-Wolfe™ cal-
culation.® The unperturbed photon trajectory is taken to
be x"=n*\A, p*=Edx/d.=En", with E the energy,

=1, n%=1, and A the affine parameter. The perturba-
tion p*=p"+6p* is calculated from the geodesic equa-
tion as
S A

==+ [ hvonn* dr+ (houn)]

i

op°
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(10)
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To interpret (10), it is important to ask a physical
(i.e., coordinate-independent) question. We imagine
that the photon is actually emitted from a massive parti-
cle nearly at rest in the coordinates (7), with four-
momentum k*(i) =k*+ 6k*(i), where k* =(m,0) and m
is its rest mass. The mass-shell condition for the particle
implies that 8k°®=— % hoom. The photon energy is
given by E=—k-p(i)/m, which leads to &p°(i)/E
=ho(i{)n*+6k"(i)n,/m. Similarly, we imagine that the
photon is finally detected by another particle with four-
momentum k*(f) =k*+6k*(f). The final energy of the
photon measured by the particle is E(f)=E+E
= —k-p(f)/m, which leads to 8E/E =68p°(f)/E —ho,
x (In*—8k*(fIn,/m. Thus (10) leads to
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FIG. 1. The geometry for calculating the photon redshift or
blueshift produced by a collapsing knot. The knot is at the ori-
gin: S, the surface of last scattering, is the plane z =z, <0.
The impact parameter is R, and the time the photon wave front
passes z =0, relative to the time at which the texture collapses,
is to. We are at z =oo,

The three terms are a path-dependent redshift, a part from the local gravitational potential, and a Doppler term. It is
simple to check that under a coordinate change 6h,,= —¢&, ,— &, ,, 6k' =&ym, SE/E is invariant as it should be.
Ignoring the Doppler term (we show this is small later), we perform the integral [in the nonsingular metric (7)]17 to

yield, in the geometry of Fig. 1,

OF r _2_3‘ to 14z

Rz—t()Z to

2z+1

=— £ |arctan
E 2

totz r3 r r3 r
Here R is the impact parameter for the photon, and ¢¢ is
the time (relative to the time at which the knot collapses,
t =0) at which the photon passes z =0. Photons crossing
z=0 before the texture collapses are redshifted, while
those crossing after collapse are blueshifted. A heuristic
explanation for this is given by considering a spacetime
diagram of the knot collapsing (Fig. 2). The former
photons fall into a cloud of collapsing texture; the latter
ones climb out. In the limit where z;,=—o and
zy =+ oo, the result is

OFE _ erm to

E 2 QR ' 4
Note that this only applies for R less than the scale of
the knot—as we discussed earlier (13) is cut off on a
scale of order ¢ in the realistic case. On scales of order
the knot size, effects of the expansion of the Universe
should be included, which could slightly modify (13).
Equation (13) shows that t¢ is the scale which deter-
mines the size of the red or blue disk produced in the mi-
crowave background, probably surrounded by a “com-
pensating” ring of the opposite color. However, the peak
amplitude is always a fixed constant, ex/2.

To summarize, texture knots produce blue or red disks
on the microwave sky with maximal fractional tempera-
ture deviation er/2 =8x2Gn?% This is 7 times the “naive
Newtonian potential” GM <,/r =8xGn?. The distribu-
tion of 8T/T is quite non-Gaussian and the fixed max-
imum is a signal peculiar to texture.
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The distribution of these red and blue disks on the mi-
crowave sky may be calculated from the scaling solution
(1). Assuming @ =1, the background metric is confor-
mally flat in comoving coordinates and conformal time 7.
In the matter era the comoving radius of the horizon is
t=3t/a(z), with a(¢) the scale factor. The angle sub-
tended by the horizon at early times is 1;/1¢
=(1+2Z,) 72, where the subscript i refers to the early
time and the subscript 0 to today. At conformal time 7,

Es\ X

FIG. 2. Spacetime diagram showing photon from last-
scattering surface traversing space with collapsing knots (de-
picted as ““lightcones™). If the photon traverses a knot as at A,
it falls into a knot and is blueshifted. If the situation is as at B,
the photon climbs out of the knot and is redshifted.
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the comoving radius of the spherical front of photons
traveling from the last scattering surface to us is
r(t)=19— 1. Consider adding the contribution of knots
which collapse during each increment of conformal time
dt. The number of knots per unit comoving volume col-
lapsing in the interval dt is dn=cdt/t*. The typical
comoving scale of a knot is = k7 with k= 7.° A knot
collapsing at t at distance r from us only perturbs the
microwave background with of order the maximal effect
if —xt<r—r(r) <xt. For 1< 19, the angle subtended
by the disk produced is given by 8= [r —r(z)1/r. Thus
the number of knots collapsing in d7 producing red disks
subtending an angle in the range d6 is given by

dn =47rc£4£r2dr=v47rcd—§rgd6, - X cp<+ 55,
T T To 70

(14)

Integrating over 7, we find the number of red disks of an-
gular radius 6 to 6+ d6,

_4nc 1d6

dn 3 K Pl
It follows that the total solid angle subtended by all red
disks is of order 472ck’[In(1+Z)1/6, where Z|, is the
redshift at last scattering, = 1000. Thus about 4ck*
= 15 of the sky is covered by red and an equal area by
blue disks. If the Universe is reionized by nonlinear
structure formation Zs could be as low as 30, and the
fraction covered halved. The temperature distribution is
thus highly non-Gaussian, and a strategy of large-area
coverage is required.

Finally, we wish to normalize ¢ by demanding that the
perturbation produced in the matter by the texture be
enough to form the large-scale structure observed today.
The small-scale structure near the collapse is found by
solving the geodesic equation for particles initially at
rest. In Coulomb gauge, for fixed radius and at early
times the metric is clearly flat. Thus particles may be
taken as initially stationary. The velocity perturbation
dv'=3k'/m is given by

(15)

se'x, )= [ dr'(—hoot S hoo) (x,1)

= (ho,‘)+ 1? f_mmdt'hoov,-(x,t')

T x'

€S (16)
Thus particles get a velocity kick towards the center, of
magnitude er/2, independent of their distance from the
knot center. This effect, put in the expanding-universe
context, should be a reasonable approximation out to
scales r =1, the size of the knot. It means that regions
in the immediate vicinity of a knot would form nonlinear

structures quite early in the matter era.

A rough normalization may be obtained by supposing
that (16) gives the right order of magnitude for the ve-
locity field. In linear theory, the velocity perturbation
grows as a(z)'2. Growing perturbations produced at
equal matter-radiation density and using Zeq= 2500k >
(taking @ =1), we demand that v =600 kms ~' today
(the velocity of our galaxy relative to the microwave
background). This determines en/2=8x°Gn’=~10"">
xh ~!. This is therefore the expected magnitude of the
peak temperature fluctuations produced in the mi-
crowave background, in an Q =1 universe with texture
and cold dark matter. The velocity field of this magni-
tude induced by texture will certainly be coherent on a
scale comparable to the comoving Hubble radius at
equal matter-radiation density, when perturbations start-
ed to grow. This scale corresponds to 134 ~' Mpc, com-
parable to the coherence scale seen in the large-scale ve-
locity field, and in the deep redshift surveys.

The magnitude of the temperature fluctuations calcu-
lated here should be within reach of the Cosmic Back-
ground Explorer (COBE) satellite which is currently in
operation. The direct effect we have calculated should
dominate on the large angular scales COBE is sensitive
to (>7°). The Sachs-Wolfe and Doppler effects on
scales larger than the horizon at last scattering are small
in this theory due to the isocurvature nature of the per-
turbations on superhorizon scales.
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