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In nonrelativistic quantum mechanics the so-called
virial theorem relates the kinetic energy of a system to
the expectation value of the directional derivative of the
potential. Unfortunately, this theorem applies only to
nonrelativistic kinematics. In this Letter we derive a
theorem which may be regarded as the relativistic gen-
eralization of this well-known relation. This relativistic
virial theorem relates the expectation value of the direc-
tional derivative of the potential to the expectation value
of an operator which involves the relativistic kinetic en-

ergy. It comprises, of course, the nonrelativistic theorem
as a special case.

With the relativistic virial theorem at our disposal we

are, for instance, able to cast some light on a long-
standing puzzle in hadron spectroscopy: The description
of hadrons consisting of light quarks by two seemingly
different approaches, viz. in terms of the nonrelativistic
Schrodinger formalism, on the one hand' (for a rather
comprehensive list of references, see Refs. 2 and 3), and

by a semirelativistic Hamiltonian incorporating relativis-
tic kinematics, on the other hand, produces compar-
ably good results.

Consider the two-particle Hamiltonian with relativistic
kinematics in the center-of-mass system,

H=(p +m )'1 +(p +m )'t +V(x)

Applied to the phase-space variables p and x, the opera-
tor

generates the dilatations

DpD ' (I/k)p, DxD ' Xx. (3)

Under these transformations the Hamiltonian (1) be-
haves like

DHD '
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and

V(kx) —V(x) =tx VV(x)+O(t ) .

In the following, all expectation values are understood to
be taken with respect to the normalized eigenstates of
the Hamiltonian (1), with an energy E=(H). Then
((DHD ')D) =(HD) holds since both sides equal E(D).
Dividing the difference of the left-hand side and right-
hand side of this equality by t and performing the limit

(4)

The virial theorem follows most easily from the first
derivative of the dilated Hamiltonian DHD ' with
respect to t—= Ink at t 0. Expanding in powers of t, we
find
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0, we obtain
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which is the relativistic virial theorem:

form

2

(x.vv(x)) =( v (9)

where tu =m)m2/(mI+m2) is the reduced mass of the
two-particle system under consideration. For a central
potential V=V(r) the directional derivative x VV(x) is

simply r (d/dr) V(r).
The decomposition
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In the nonreiativistic case it reduces to the well-known allows us to use the above theorem (8) in the computa-
tion of the eigenvalues of the Hamiltonian (1):

mi mE—=&H) =&(p +mI )' +(p +m2)' )+&V(x)) =&x VV(x))+&V(x))+ +
(p +m )' (p +m )'

The last expectation value in the above expression drops
out in the ultrarelativistic case m ~

=m2 0,

E &x VV(x))+&V(x)), (i2)

=m, +m, + —,
'

&x VV(x))+&V(x)) . (13)

Two main features characterize any realistic "QCD-
inspired" interquark potential: Its short-distance behav-
ior is dominated by one-gluon exchange (which gives an

approximately Coulomb-like contribution),

4 Qs
lim V(r) = ——
r 0 3 I'

(i4)

while at large distances it has to provide for confinement,

lim V(r) =ar.
r~ oo

The most simple-minded picture is thus represented just
by the sum of these two contributions, which is the fun-

nel or Cornell potential,

4 &s
V(r) = —— +ar.
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The potential V enters into the expression (11) for the
energy of the bound state, however, in a way in which its
Coulomb part cancels, r(d/dr) V(r)+ V(r) =2ar. In

contrast to that, due to the factor —,
'

in front of &x VV)
in (13), this cancellation is incomplete in the nonrela-
tivistic version. Consequently, to the extent that the
third term on the right-hand side of Eq. (11) may be
neglected, the expectation value of the nonrelativistic
Hamiltonian with a purely linear potential V„,=a~ is of
formal resemblance to the expectation value of the rela-
tivistic Hamiltonian with the funnel potential (16). The
corresponding eigenstates are, of course, different. Nev-

whereas it contributes via the virial theorem (9) to
&x VV) in the nonrelativistic case,

2

E =&x VV(x))+&V(x))+m +m-
2p

p+m
F. 2 2,i +V

&p )+m
The operator on the right-hand side of this inequality is
formally of the same structure as the nonrelativistic
Schrodinger Hamiltonian

2

H„, 2m+ + V„, (19)

with, however, an effective mass m = —,
'

(&p )+m )'/
and the nonrelativistic potential

Vnr
2m —(&p')+m') '"+V

(&p')+ m ') '/'

&p2)
2m — + V. (2o)

The eff'ective mass m as well as the constant in the po-
tential V„„depend on the average momentum &p ) and

ertheless, the above similarity may lead one astray to
treat bound states of light constituents nonrelativistical-

ly, by employing only a linear potential.
There are some further hints why the description of

bound states by the nonrelativistic Schrodinger formal-
ism might not be nonsense.

First of all, according to
~
&8)

~

~ &8 ) '/ valid for any
Hermitian operator 8, the relativistic kinetic energy
satisfies &(p +m ) '/ ) ~ (&p )+m 2) '/ . From this one
finds for the expectation value of H (for equal masses
mI m2 m)

&H) =2&(p2+m 2)1/2)+(V) (2(&p2)+m 2) I/2+&V)

+m=2 ™+&V)= 2 +V
(&p2)+m2) I/2(&2)+m2) I/2

(i7)

Consequently, the relativistic energy eigenvalue E=&H)—
is bounded from above by
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will thus vary from level to level. The expectation value
of the kinetic energy is related by the nonrelativistic viri-
al theorem (9) to (r(d/dr) V(r)). The latter is a con-
stant only for the exceptional case of a logarithmic po-
tential ccln(r/ro). ' Only in this case is (p & indepen-
dent of the level of excitation.

Second, there exists a certain kind of duality between
the ultrarelativistic Hamiltonian with a harmonic-
oscillator potential and a nonrelativistic Hamiltonian
with a linear potential:'3 The ultrarelativistic Hamil-
tonian H„, 2(p ) ' + rcr is converted into the nonrela-
tivistic Hamiltonian H„, p /m+ar by means of the du-

ality transformation i p i ar/2, r 2 ( p i /a, provided
the parameters x, a, and m are related by x a /4m.
The eigenfunctions in the corresponding wave equations,
H„,p(x) Ep(x) and H„,y(y) Ey(y), respectively, are
then connected by the Fourier transformation p(x)
=fd y exp[i (a/2) x y) y(y).
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