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In nonrelativistic quantum mechanics the so-called
virial theorem relates the kinetic energy of a system to
the expectation value of the directional derivative of the
potential. Unfortunately, this theorem applies only to
nonrelativistic kinematics. In this Letter we derive a
theorem which may be regarded as the relativistic gen-
eralization of this well-known relation. This relativistic
virial theorem relates the expectation value of the direc-
tional derivative of the potential to the expectation value
of an operator which involves the relativistic kinetic en-
ergy. It comprises, of course, the nonrelativistic theorem
as a special case.

With the relativistic virial theorem at our disposal we
are, for instance, able to cast some light on a long-
standing puzzle in hadron spectroscopy: The description
of hadrons consisting of light quarks by two seemingly
different approaches, viz. in terms of the nonrelativistic
Schrédinger formalism, on the one hand! (for a rather
comprehensive list of references, see Refs. 2 and 3), and
by a semirelativistic Hamiltonian incorporating relativis-
tic kinematics, on the other hand,*”’ produces compar-
ably good results.

Consider the two-particle Hamiltonian with relativistic
kinematics in the center-of-mass system,

H=p>+m?) 2+ (p>+m3)"?+V(x). (1)

Applied to the phase-space variables p and x, the opera-
tor

D=e(i/2)(ln)\)(p~x+x-p) )
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generates the dilatations
DpD ~'=(/A)p, DxD ~'=2x. (3)

Under these transformations the Hamiltonian (1) be-
haves like

1/2
+

1/2

DHD ~' = [#p%m% %p2+m§ +V0x).

4)

The virial theorem follows most easily from the first
derivative of the dilated Hamiltonian DHD ~' with
respect to t=InA at t=0. Expanding in powers of t, we
find

1/2 2
[$p2+m2 =(p2+m2)1/2——L—(p2+m2)1/2t+0(t2)
(5)
and
V(ax) —V(x) =tx-VV(x)+0(?). (6)

In the following, all expectation values are understood to
be taken with respect to the normalized eigenstates of
the Hamiltonian (1), with an energy E=(H). Then
((DHD ~")D) =(HD) holds since both sides equal E{(D).
Dividing the difference of the left-hand side and right-
hand side of this equality by ¢ and performing the limit
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t— 0, we obtain form

2
lirr:)%((DHD—' —H)D) <x-vv(x)>=<P—>, ©)
= I

+x'VV(x)> =0,

=<_ p’ _ p
P +mD?  (pirmd "

@))
which is the relativistic virial theorem:
2 2
. = P p
x WV ) =( Tt T ). ®

In the nonrelativistic case it reduces to the well-known

E=H)=((p*+m})'*+ (p*+m}) "+ ¥ (x)) =(x-

The last expectation value in the above expression drops
out in the ultrarelativistic case m, =m, =0,

E=x-VW&x)H+Vrkx)), (12)

whereas it contributes via the virial theorem (9) to
(x-VV) in the nonrelativistic case,

2
E=<x-vv(x)>+<v(x)>+ml+m2—<§;>

=m,+mr+ F (x- VW) +{V(x)). (13)

Two main features characterize any realistic “QCD-
inspired” interquark potential: Its short-distance behav-
ior is dominated by one-gluon exchange (which gives an
approximately Coulomb-like contribution),

lim V() =—35
r—0 3 r

(14)

while at large distances it has to provide for confinement,

(15)

lim V(r)=ar.

r— o0

The most simple-minded picture is thus represented just
by the sum of these two contributions, which is the fun-

nel or Cornell potential,®~"
v(r)=—%&+ar. (16)
r

The potential V enters into the expression (11) for the
energy of the bound state, however, in a way in which its
Coulomb part cancels, r(d/dr)V(r)+V(r)=2ar. In
contrast to that, due to the factor ¥ in front of (x-VV)
in (13), this cancellation is incomplete in the nonrela-
tivistic version. Consequently, to the extent that the
third term on the right-hand side of Eq. (11) may be
neglected, the expectation value of the nonrelativistic
Hamiltonian with a purely linear potential V', =ar is of
formal resemblance to the expectation value of the rela-
tivistic Hamiltonian with the funnel potential (16). The
corresponding eigenstates are, of course, different. Nev-
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where y=mmy/(m,+m;) is the reduced mass of the
two-particle system under consideration. For a central
potential ¥ =V (r) the directional derivative x- VV(x) is
simply r(d/dr)V(r).
The decomposition
__p _m?
(p2+m2)|/2 (p2+m2)l/2
allows us to use the above theorem (8) in the computa-
tion of the eigenvalues of the Hamiltonian (1):

=(p*+m?)'?— 1o

m} m3
VV(x))+(V(x)>+<(p2+mlz)]/2 (p2+m22),,2>. (11)

ertheless, the above similarity may lead one astray to
treat bound states of light constituents nonrelativistical-
ly, by employing only a linear potential.

There are some further hints why the description of
bound states by the nonrelativistic Schrédinger formal-
ism might not be nonsense.

First of all, according to |(®@)| <<(®?% "2 valid for any
Hermitian operator @, the relativistic kinetic energy
satisfies ((p2+m?)"/%) < ((p)+m?) 2. From this one
finds for the expectation value of H (for equal masses
my=m>=m)

(H)=26(*+m)H'")+) < 2(pD+m?) 2+ ()

_ (pD+m? 24+ m?
z—P———+<V>=<z T +V>‘
17)

T (pA+m)
Consequently, the relativistic energy eigenvalue E=(H)
is bounded from above by
2+m 2
E=< <2 + V> .
(p+m?H)'2

The operator on the right-hand side of this inequality is
formally of the same structure as the nonrelativistic
Schrodinger Hamiltonian

(18)

2
Hy=2m+2 +y,
m

(19)

with, however, an effective mass m =1 (p>)+m?)'2
and the nonrelativistic potential

2m? ((n2 2y1/2
Vnr=m pH+mH) ' +v
. _ {p?
=2m———+V. (20)
m

The effective mass m as well as the constant in the po-
tential V,, depend on the average momentum (p?) and
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will thus vary from level to level. The expectation value
of the kinetic energy is related by the nonrelativistic viri-
al theorem (9) to {r(d/dr)V(r)). The latter is a con-
stant only for the exceptional case of a logarithmic po-
tential «In(r/rp).'> Only in this case is (p2) indepen-
dent of the level of excitation.

Second, there exists a certain kind of duality between
the ultrarelativistic Hamiltonian with a harmonic-
oscillator potential and a nonrelativistic Hamiltonian
with a linear potential:'> The ultrarelativistic Hamil-
tonian Hy, =2(p?) "2+ xr? is converted into the nonrela-
tivistic Hamiltonian H ., =p?/m+ ar by means of the du-
ality transformation |p|— ar/2, r— 2|p|/a, provided
the parameters «, a, and m are related by x=a’/4m.
The eigenfunctions in the corresponding wave equations,
Hy0(x)=E¢(x) and H,w(y) =Ey(y), respectively, are
then connected by the Fourier transformation ¢(x)
=fd*yexpli(a/2)x-yly(y).

We thank H. Grosse for reading the manuscript and
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