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Disorder and Interactions in the Hubbard Model
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We investigate the single-band Hubbard model with random site energies in the strong-repulsion limit,
as represented by the slave-boson formulation of the t-J model. It is essential to include the correlations
between the slave-boson mean field and the disorder. This leads to the widening of the non-Fermi-liquid
("generalized Mott insulating" ) region around half filling. In the Fermi-liquid regime we apply the
renormalization-group method. The resulting phase diagram has superconducting, magnetic, and insu-
lating phases. The disorder generally suppresses superconductivity and gives rise to the formation of lo-
calized magnetic moments.

PACS numbers: 71.30.+h, 72. 15.Rn, 74.65.+n

The modern scaling theory of localization, ' originally
developed to describe the Anderson transition for nonin-

teracting electrons, was later extended to include effects
of electron-electron interactions. ' In the absence of in-

teractions and in two dimensions, logarithmic singulari-
ties appear in the two-particle correlations as modified

by the disorder. For any disorder strength, the conduc-
tivity decreases logarithmically as temperature decreases
(or length scale increases). At dimensions greater than
two, the logarithmic singularities sum to power-law be-
havior which describes the continuous disappearance of
the conductivity at a mobility edge determined by a criti-
cal value of the disorder. These results were subsequent-

ly reformulated as a renormalization-group (RG) treat-
ment of a matrix nonlinear-cr-model field theory of the
long-wavelength disorder-coupled (particle-particle and
particle-hole) diffusion modes of the system. '

Finkel'shtein extended the RG treatment of the scal-

ing theory to include interaction effects. The disorder
was treated in lowest order and all interaction contribu-
tions to the leading logarithmic behavior were summed.
This investigation demonstrated that the diffusive propa-
gation of electrons due to the disorder gives rise to
strongly enhanced interactions which can eventually lead
to the localization of the electrons. This process is ac-
companied by the buildup of local magnetic moments
and the vanishing of the quasiparticle diffusion constant.
However, the RG equations break down in a region
where the charge diffusion is still nonzero, although the
spin-diffusion constant is going to zero and the spin sus-

ceptibility is diverging. Whether or not the localization
of spin and charge happen simultaneously is presently a
subject of active research.

The failure of these earlier approaches to succeed to
give a complete picture is due in part to the fact that
they are essentially perturbative in that the interactions
are assumed to be smaller than the bandwidth. Thus,
firm conclusions cannot be drawn when the couplings

scale to large values. It is therefore natural to investi-
gate the problem starting from the strong-coupling limit
at the outset. In order to approach the interplay of the
Mott and the Anderson transition from a complementary
angle, in the present work we investigate the strongly in-
teracting disordered electron system using the Hubbard
model. The use of the Hubbard model has the advan-
tage that one may include the effect of commensurabili-
ty, which is an essential ingredient of the Mott transi-
tion. We are then also able to draw some qualitative
conclusions about the nature of the problem close to half
filling where a Mott transition is expected even in the ab-
sence of disorder. Some progress describing the situation
microscopically from the large-correlation limit has been
made recently within a Hartree-Fock treatment of the
Hubbard model, with off-diagonal disorder treated ex-
actly by numerical methods. The strong-correlation
point of view is of interest not only for doped semicon-
ductors near their metal-insulator transition but also, in

particular, for heavy-fermion materials and high-T, su-
perconductors. Since, in the weak-coupling theories, ' '

the effective interactions scale to strong coupling, we ex-
pect a connection of our approach to the earlier work.

We begin with a disordered Hubbard model in the
large-U limit. The disorder appears as a random distri-
bution of local site energies (diagonal disorder). After
redefining the vacuum to prevent double occupancy, one
performs a t/U expansion to arrive at an effective Ham-
iltonian, the so-called t-J model:

S= —t g b, hicks c; +H.c.+g(e; —p)c;, c;,
&i,j &, a i, a

Cl a Cj aCj a'Ci, a'+, &i,j&a, a'

gc; c, +b; b, —I,i, a

where A, is the spin degeneracy and the site energies e;
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are Gaussian random variables with zero mean and rms

value W. In terms of the parameters of the original
Hubbard model, J=4t /U. We have utilized the slave-

boson formalism to perform the projection on the sub-

space of singly occupied sites. This constraint is en-

forced through the minimization of the free energy with

respect to the Lagrange multiplier X. In the following,
we shall treat the slave bosons in a mean-field approxi-
mation which is justifiable only for N, »1.

The conventional approach would be now to perform a
translationally invariant mean-field approximation for
the slave-boson field, (b) =(1—n, ) 't, which yields a re-

duced bandwidth t, tr
= tb = t (1 n,—), where n, is the

number of electrons per site, and then to treat the in-

teraction term. The insufficiency of this approach was

pointed out by Rice and Ueda' in a slightly different

context. They emphasized the importance of the correla-
tions between the slave-boson amplitudes and the ran-
dom site energies. We represent these correlations in

linear response as follows: b; =bp+g;e;/2bp, where g;
=Bn, /Bp = —Bn, /B. e, =Bb; /Be;. Here g; denotes the
charge susceptibility. Our approximation is that the site
i is imbedded in a Fermi liquid representing the average
behavior (e=0) of the other sites. This one-site problem
is analogous to the single-Anderson-impurity problem
for which the charge susceptibility is known:" g; =@~
=bp/t. The approximation here may be improved by in-

cluding the influence of nearest-neighbor site-energy
variations by means of the nonlocal charge susceptibility
which may be obtained from the treatment of the two-
Anderson-impurity Ruderman-Kittel-Kasuya- Yosida
problem. ' ' With these considerations the Hamiltonian
takes the form

'6 = —tbp g (I +bpe;/2t)(1+bpej/2t)c; cj +H.c.+g(e; —p)c; c; o
(i,j &, a I, Cf

Z Ck, o Ck', o'Ck —
q oek'+q, a'+ ~&constraint ~

k, k', q, e, tJ' s
(2)

where J(q) =J[cos(q„)+cos(q~)].
Now we can make the central observation of the pa-

per: The Hamiltonian of Eq. (2) describes an interact-
ing disordered Fermi liquid in the weak-coupling regime
[for t(1 n, )»—J)]. Therefore, the methods developed
for such systems can be applied, the main difference be-

ing that now the interactions are attractive, as can be
seen from the sign of the interaction term in Eq. (2).

A few remarks are in order here. At present, the gen-
eral belief is that close to half filling, magnetic fluctua-
tions play an important role and possibly destroy the
Fermi-liquid behavior. Thus our observation applies
only farther away from half filling, as is required in any
case by the above criterion for weak coupling. Second,
one may wonder how the strongly repulsive model be-
came attractive. The reason is that the repulsive core of
the interaction potential is so large that on-site charge
fluctuations are practically absent and therefore the core
is completely excluded from the low-temperature dynam-
ics (an effect which is insured by the slave bosons). On
the other hand, the screening Friedel oscillations provide
an attractive effective potential on the nearest-neighbor
site, which determines the low-energy behavior. Third,
most of the work on such systems concentrated on site
disorder only. We have disorder in the hopping ampli-
tudes as well; it is introduced by the constraint as seen in

Eq. (2). As we demonstrate below, however, the random
variables can be integrated out exactly and in a mean-
field approximation the disorder on the bonds leads only
to a renormalization of the parameters.

Even close to half filling some features of the model
are qualitatively correct: A metal-insulator transition is
expected according to the Mott scenario as we approach
half filling and indeed the efIective bandwidth goes to

zero as —(I —n, ); consequently, the conductivity van-

ishes also. Actually, we enter the strong-coupling region
before reaching half filling, when J/t, tt-l. In this re-

gime (which can be called the generalized Mott insula-

tor), the still longer-range magnetic correlations render
the materials insulating, as in the usual treatments of the
t-J model at small dopings. '

The influence of disorder on this (generalized) Mott
metal-insulator transition can be obtained by averaging
the constraint equation:

b'+ g'«') =b' I+c i 0 4b2 r 0
0

Thus, the effective bandwidth is reduced by the disorder
according to t, tr =t(1 —n, )/(1+W /t ). It is seen that
the weak-coupling condition breaks down further from
half filling: The Mott insulating phase is extended by
the disorder The absen. ce of b in the last term's
denominator was one of the main points of Ref. 10 in the
analogous Anderson-impurity problem.

We proceed analogously to Finkel'shtein's treatment
by introducing a functional integral over (Matsubara)
frequency-dependent Grassmann variables to represent
the fermions. The quenched average over the random
configurations is achieved by the usual replica trick. '
The disorder is integrated out exactly over a Gaussian
distribution of width 8'. Since the terms linear in the t.';
have coeScients bilinear in the c s, this procedure yields
a translationally invariant action with a mixed replica
four-fermion interaction, as in Ref. 4. However, the
terms of Eq. (2) which contain the charge susceptibility
introduce, in addition to the usual on-site terms, a cou-
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pling between nearest-neighbor sites as well. The mean-
field factorization of the on-site terms defines a lifetime

A new feature comes from the similar treatment of
the nearest-neighbor term. A further reduction of the
effective bandwidth is found: r,tr=t, (r(l —W /4t ).

The next task is to carry out a two-step renormaliza-
tion procedure. First, all states outside an energy strip
around the Fermi level of width 1/r are integrated out
through, e.g. , a mean-field or a random-phase approxi-
mation. It has been shown' in the nondisordered case
that the mean-field approach yields the enhancement of
some of the effective dimensionless couplings I (where
I o =J/r, rr), primarily in the d-wave superconducting
channel, with a lesser rise in the s-wave superconducting
and magnetic channels. On the other hand, the coupling
in the particle-hole charge channel is suppressed. Since
in this energy region the length scales are shorter than
the elastic mean free path i, this behavior of the effective
couplings is not changed qualitatively by the disorder.

In the second stage of the scaling, one integrates out
the states within the I /r-wi de strip around the Fermi en-

ergy. Here, the disorder averages out the anisotropies of
the physical quantities, preserving only their s-wave

components. In this long-wavelength regime, the mo-
menta are confined to small values and J(q) can be ap-
proximated by its q=o value. This eff'ect appears for-
mally as a strong suppression of the energy-dependent
eN'ective non-s-wave components of the couplings. This
has been shown, for example, for the d-wave supercon-
ducting amplitude: '

r "k~(k)=~, I+
1+i/2ror

(4)

where y (k) is the d-wave structure factor. Therefore,
we neglect the anisotropic amplitudes and utilize the
known scaling relations for the isotropic short-range cou-
plings:

dg g(2 —d) 2
1+y.+g 4 —3 ln(1+ y, ) —yc, (5a)
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logarithm of the temperature. Only two Fermi-liquid
channels are shown because a constraint uniquely deter-
mines the behavior of the third (charge) channel.

To obtain the phase diagram of the model, we in-

tegrate the scaling equations. The phases should be
identified by the divergence of the corresponding effec-
tive Fermi-liquid coupling y;. Since the scaling equa-
tions were derived perturbatively, we can fix the phase
boundaries at the places where the corresponding y s

reach unity. In Fig. 1, we show the phase diagram in

two and three dimensions. The displayed surface
separates the "high-temperature" superconducting phase
from the other phases. By this we mean the supercon-
ducting phase of the mean-field treatment of the ordered
model, which has a high value of T, . ' For g=0, this

=L[(1+y,) +2yc(1+3y, +2y, )],
dye li+3ys+ yc —yc(3y5+2yc)i —yc,2

(sb)

(5c)

where g is the dimensionless measure of the disorder. It
is proportional to 8' and its bare value is go=1/EFr,
where eF is the Fermi energy. In the noninteracting case
it is equal to the resistance of the sample and in the in-

teracting case it is still simply related to it. d is the di-
mension and y, c =I, c/z, where z is the wave-function
(or frequency) renormalization factor and the s and C
subscripts refer to the spin and Cooper channels. Final-

ly, the scaling variable x= —In(l;„), where l;„is an
inelastic-scattering length proportional to some negative
power of the temperature; thus x is proportional to the
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FIG. 1. (a), (b) The phase diagram of the disordered Hub-
bard model in two and three dimensions, respectively. g is the
measure of the disorder, and y, and yp are the dimensionless
vertices in the magnetic and superconducting channels, respec-
tively.
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FIG. 2. The temperature dependence of the resistivity for
typical bare values of the vertices —y, =0.25, —y&=0.25 in
three dimensions.

superconducting phase is dominant. However, for non-
zero disorder and for small values of the y„supercon-
ductivity is generally suppressed. This eAect is stronger
in two dimensions as is witnessed by the bulging of the
surface. Those trajectories which start below the surface
exit the unit cube at one of the side walls. In so doing,
the iteration decelerates, so that the divergence of the
eA'ective couplings occurs at lower temperatures. There-
fore we can distinguish two further regions in the param-
eter space: The first is a low-temperature superconduct-
ing regime, which is connected to the high-T, phase
through a crossover; here T„is lower, but yc is still the
dominant singularity (this happens for

~ yc~ &&
~ y, ~,

both of them below the displayed surface). The second
is a disordered magnet phase, where superconductivity is

suppressed and y, is diverging. In the latter case, y, is

changing sign as well, so we are back at the scenario of
the weakly interacting disordered electron gas; i.e., one
expects the formation of localized magnetic moments
and possibly spin-glass behavior. ' The dominance of
magnetism is ensured by the appearance of ferromagnet-
ic correlations, since they suppress superconductivity, as
can be seen from Eq. (5c). It is noteworthy that for in-
termediate couplings [when the term in square brackets
in Eq. (Sc) is negativej, increasing disorder may in fact
increase T, . The eA'ect is strongest for larger values of
y„,i.e., closer to a phase boundary with magnetism.

From the renormalized value of g one can also obtain
the temperature dependence of the resistivity (p=1
xgz); we show its behavior for a few initial conditions in

Fig. 2. Two features are important: In contrast to the
weak-coupling approach, ' the resistivity p(T) is always

rising, a clear indication of the localizing effect of disor-
der. For the low-temperature superconductor region and
for the magnetic phase, this temperature dependence is
much weaker than for the high-T, phase.

In this paper we investigated the eAect of disorder on
the strongly interacting electron gas, in other words the
interplay of the Mott and Anderson scenarios for the
metal-insulator transition. The strong correlations were
treated through a slave-boson formalism. In the frame-
work of a correlated mean-field approach we mapped the
problem onto a weakly interacting attractive Fermi
liquid. First, the generalized Mott insulating region
around half filling was qualitatively shown to expand due
to the disorder. Second, a renormalization-group ap-
proach was used to determine the phase diagram. The
high-T, superconductor phase gives way to a disordered
magnet and a low-T, superconductor with increasing dis-
order. However, disorder can in fact enhance T, when
the system is close to the superconductor-disordered-
magnet phase boundary. Finally, the monotonic temper-
ature dependence of the resistivity shows the effects of
localization. This approach will be improved by includ-
ing slave-boson fluctuations around the mean-field solu-
tion.
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