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Relationship between Permeability and Diffusion-Controlled Trapping Constant of Porous Media
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For anisotropic porous media of arbitrary topology, it is shown that there exists a rigorous relation be-
tween the fluid permeability tensor k and the diA'usion-controlled trapping constant y, namely, k y I.
It is demonstrated that the equality is achieved for a certain class of microstructures and that the bound
can be relatively sharp for other media. The important fundamental as well as practical implications of
this relation are discussed.

PACS numbers: 47.55.Mh, 51.10.+y, 61.70.—r, 66.30.—h

In the study of porous and composite media, expres-
sions which relate one eA'ective property of the medium
to a different property have been long sought. ' 3 Two
important properties of porous media which have re-
ceived considerable attention are the trapping constant y
(associated with diffusion-controlled processes among
static traps) and the fluid-permeability tensor k (see
Refs. 3-7 and references therein).

In this Letter, a new expression rigorously relating the
seemingly disparate properties k and y of anisotropic
porous media of general topology is proven. This is the
first time that the permeability tensor k has been
rigorously linked to another effective property for media
of arbitrary topology. Specifically, it is shown that (1)
k & y I (where I is the identity tensor); (2) the equali-

ty sign is achieved for a certain class of microstructures;
and (3) the bound on one of the properties, given the
other, can be relatively sharp for geometries which do
not achieve the equality sign. The fundamental as well

as practical implications of this relation are subsequently
described.

Before discussing the relation between k and y, it is
first necessary to precisely define the effective properties.
Consider the trapping problem first. Let V~ and Vq rep-
resent the trap-free and trap regions, respectively, and
8V denote the surface between V~ and Vq. Let p;
denote the volume fraction of region V;. The reactant
diffuses (with scalar diffusion coeIIicient D) in V~ but is

instantly absorbed on contact with any trap. At steady
state, the rate of production of the reactant (per unit
trap-free volume) ct is exactly compensated by its remo-
val by the traps. For statistically anisotropic media, it
has been rigorously shown, using the method of homo-
genization, that o = yDCo, where Co is an average con-
centration field (per unit body volume),

y
' =(u),

and

The angular brackets of (1) denote an ensemble aver-

age. u is zero in V2. Note that the trapping constant y
is a scalar quantity even for statistically anisotropic
media. The trapping constant y defined by (1) has di-

mensions of (length) . Using this definition of the

trapping constant, y&~D is the trapping rate and, hence,

(y&~D) ' is the average survival time of a Brownian
particle.

For the case of slow viscous flow through statistically
anisotropic porous media, Darcy's law U=p 'k Vpo
(where U is the average flow velocity, Vpo is the applied
pressure gradient, and p is the viscosity) has been de-
rived, where the symmetric, second-rank fluid-

permeability tensor is given by

k =(w), (3)

and

hw =Vx —I in V],
V w=0 in V],
w=0 on tlV.

(4)

k= "a""
(5)

Here V~ and 8V denote the fluid region and pore-solid
interface, respectively; w = [w„] is the ith component of
the velocity field due to a unit pressure gradient in the
jth direction, equal to the null tensor in Vq, and tr is the
associated scaled vector pressure field. Both w and x
are stationary random fields. The scaled tensor velocity
field w is generally not symmetric. Note that k has the
same dimensions as y ', namely, (length) . Forming
the scalar product of w with the left- and right-hand
sides of the first line of Eqs. (4) (momentum equation),
and ensemble averaging, yields the following equivalent
energy representation of the fluid-permeability tensor
k=[k;, ]:

au= —l in Vl,
u =0 on BV. (2) In deriving (5), one must integrate by parts the

aforementioned averages and use Gauss' divergence
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V=U W, (7)

where

u =uI. (8)

Combination of (2), (4), (7), and (8) yields the govern-
ing equations for v:

hv = —Vz in Vi,
Vv=Vuin Vl,
v=o on 8V.

(9)

Forming the scalar product of v with the left- and right-
hand sides of the first line of Eqs. (9), averaging, and in-

tegrating by parts, gives

(io)

Utilizing the divergence condition of (9), the relation
above becomes

The second line of (11) follows by integrating the right-
hand side of the first line by parts. Forming the scalar
product of u with the left- and right-hand sides of the
momentum equation in (4), ensemble averaging, and in-

tegrating by parts, gives

= y '8';i —k;i . (i2)

The second line of (12) follows from the definitions (3)
and (8). Combination of (11) and (12) finally gives

(i3)

theorem. The resulting surface integrals will vanish be-
cause of the stationarity of w and jr. Note that (5) im-

plies that the permeability tensor is both positive semi-
definite and symmetric.

Proposition. —Given a statistically anisotropic porous
medium of arbitrary topology having a fluid region or a
trap-free region Vl of porosity pi, then

k&y 'I;
i.e., the symmetric tensor which results by subtracting
the fluid-permeability tensor k from the rotationally in-
variant inverse trapping-constant tensor y I is positive
semi defrni te.

The proof of the proposition is now sketched (details
shall be given elsewhere' ). First, introduce the auxili-
ary stationary and symmetric tensor field v defined by

which states that (v), given by (7), is positive semi-
definite and thus proves proposition (6).

How sharp is the bound of proposition (6)? Are there
microgeometries which achieve the equality sign of pro-
position (6)? Consider the second query first and as-
sume, without loss of generality, that the coordinate
frame is aligned with the principal axes of the medium.
The equality sign is achieved whenever a principal com-
ponent of (13) is zero. Thus, it is achieved for transport
in parallel channels (in the x3 direction) of constant
cross section dispersed throughout a solid or trap region
with porosity pi. For example, for identical channels of
arbitrary cross-sectional shape in three dimensions, it is
easily shown that one exactly has

k33=y '=pl'/cs', (i4)

where c is a shape-dependent constant (e.g. , c =2 for cir-
cles, c= —', for equilateral triangles, and c=1.78 for
squares), and s is the specific surface (interface area per
unit volume). The part of (14) relating k33 to pl and s is
the well-known Kozeny equation which for flow in real
isotropic porous media is a useful empirical relation
(c =5 models many porous media well). ' To my
knowledge, however, relation (14) is new in the context
of the trapping problem primarily because previous in-

vestigators usually considered modeling a dispersed or
disconnected trap phase. Note that since there is no flow
in the other principal directions for this anisotropic
geometry, i.e., klan

' =k22' 00, the bound of (6) is clear-
ly satisfied for these diagonal elements. The observation
that there are microstructures which achieve the equality
sign of (6) is new and has important implications for
stimulating flow through porous media. This point shall
be elaborated upon shortly.

Let us now consider the question regarding the sharp-
ness of the bound proposition (6) for media that do not
achieve the equality sign. For general microstructures,
this is a difficult question to answer since there are rela-
tively few "exact" results for the permeability tensor and
trapping constant for well-defined models. The pre-
ponderance of such exact results exist for macroscopical-
ly isotropic media in which proposition (6) simplifies as

k(y (is)
Here k is defined by k=kI. Clearly, there are micro-
structures for which the bound (15) is not sharp. For ex-
ample, for any microstructure with a completely discon-
nected pore space, k is zero while y is nonzero, so that
ky=0. Less trivially, for any cubic array of narrow
tubes, it is easy to see that k =y '/3. For the case of
flow and diAusion exterior to isotropic distributions of
spheres, the bound (15) is substantially sharper. For ex-
ample, for a dilute bed of spheres, k =2y '/3. Existing
analytical results for random distributions of spheres"
and for periodic arrays of spheres ' demonstrate that
bound (15) is relatively sharp for low to moderate values
of P2 For high values . of pq, bound (15) is not sharp, at
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least in the case of periodic arrays for which we have ex-
act results. However, in the special case of transport in

beds of particles, a more restrictive bound' [closely re-
lated to (15)] can be obtained which is sharper than the
best available "direct" variational bounds on either k or
y. Given exact data for the trapping constant y of
random porous media composed of spheres with a vari-
able degree of penetrability and a polydispersivity in size
recently obtained using Brownian-motion simulation
techniques, ' ' one can now use these data in conjunc-
tion with result (15) to bound the fluid permeability for
such models.

The relationship between the permeability tensor k
and the trapping constant y is much deeper than anyone
previously thought. The fact that proposition (6) exists
suggests that techniques used to solve the scalar
trapping-constant problem may be employed, with some
modification, to solve for the tensor fluid-permeability
problem. Indeed, for the aforementioned parallel-
channel geometries, the trapping problem is isomorphic
to the flow problem (in the direction of the channels).
For such microstructures, the mean-square displacement
of a dtgusion tracer before trapping yields not only y but

k33 and hence the diffusion tracer is equivalent to a
"momentum" tracer. The inequality of proposition (6)
suggests that a momentum tracer may still exist to yield
k for general microstructures but would not be identical
to the diff'usion tracer in the trapping problem. The for-
mulation of the permeability problem in terms of a
tracer of momentum would represent not only an impor-
tant breakthrough theoretically but computationally,
especially in light of the recent dramatic improvement in

the computational speed in obtaining y using Brownian-
motion simulation techniques. '

Finally, it is useful to comment on the relationship be-
tween the present work and the recent experimental
correlation which relates the permeability to the
nuclear-magnetic-resonance (NMR) relaxation time of
porous media. ' In the latter problem, the magnetic mo-
ment per unit volume M satisfies a time-dependent
diffusion equation with a more complicated boundary
condition than that of (2). However, for very large bulk
relaxation times and in the "strong-killing limit, " the
magnetic problem becomes a diA'usion-controlled pro-
cess. Thus, under such conditions the magnetic problem
and the one described by (2) are very similar except for
the fact that the former is a time-dependent process and
the latter is a steady-state process. Nonetheless, it may
prove fruitful to reexamine the correlation of the per-
meability and the NMR response of a porous medium in

light of proposition (6) (or some variant of it) since a
rigorous explanation of such correlations may follow.
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