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Snpersymmetric t-J Model in one Dimension: Separation of Spin and Charge
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Using the Bethe-Ansatz technique, we diagonalize exactly the one-dimensional t-J Hamiltonian for
the supersymmetric case T J. In this limit it is identical with models considered previously by Suther-
land and by Schlottmann. The ground state is a liquid of singlet pairs of varying spatial separation for
all band fillings. We find two types of gapless excitations with effective Fermi surfaces at 2kF and kF
which we identify with the holon and the spinon excitations near half filling.

PACS numbers: 75.10.Jm, 05.50.+q, 71.28.+d, 74.65.+n

The discovery of high-temperature superconductors
has greatly stimulated the interest in strongly correlated
systems. In particular, Anderson has suggested that the
t Jm-odel is an appropriate starting model. ' The t-J
model is characterized by a lattice Hamiltonian P which
describes fermions with hard-core repulsion, nearest-
neighbor hopping (t), and spin exchange (J). Con-
sidered in its own right, the model can be studied for any
dimension and for all values of the ratio J/t In thi.s

Letter, we consider one dimension and study the exact
solution at t J)0. We emphasize that the model we

solve is not identical to the large-U limit of the repulsive
Hubbard model, which maps onto the limit J« t.

Using the Bethe-Ansatz method, this model was first
solved by Sutherland in a study of a multicomponent
lattice gas. In particular, he derived the Bethe-Ansatz
equations for the case of two fermions and one boson
which reduces to the t-J model. A different form of
the Bethe Ansatz eq-uations was discovered by Schlott-
mann, who solved them for the ground state and dis-
cussed the thermodynamic properties of the model, ap-
plying the results to heavy-fermion systems. In addition,
numerical calculations on finite clusters have been re-
cently performed by Imada and Hatsugai and by von

Szczepanski et al. In this Letter, we present for the
first time a detailed analysis of the ground state and of
the elementary-excitation spectrum at arbitrary filling.
We interpret the spectra in terms of solitonlike excita-
tions which we identify as holons and spinons' near half
filling. We show that doping the system with holes natu-
rally leads to the separation of the spin and charge de-
grees of freedom. '

In the following we solve the Bethe equations for the
ground state by means of a two-string Ansatz for the
electron rapidities. The solution can be interpreted as a
liquid of bound singlet pairs of varying spatial separation
and binding energy. We solve for the elementary excita-
tions of the model and show how the two branches in-

volving charge and spin excitations can be interpreted as
holons and spinons, respectively.

Consider a one-dimensional lattice of N, sites with N
electrons where each site is capable of accommodating at

in the sector xg, & xg, & . & xg, .

y~, . . . ~, (xl, . . . , x~) -g( —1)PA~, ~, (QP)

N

xexp i g kpxjj 1

P and Q denote permutations of 1, . . . , N, ( —1) is the
sign of the permutation P, and we choose x;ex~ whenev-
er i' The condi. tion that

~
0) be an eigenstate of P

establishes a linear relation between the amplitudes
A . . . (QP). The multiparticle scattering matrix

1 N

defined by these relations factorizes into a product of
two-particle scattering matrices provided the Yang-
Baxter equations are fulfilled. ' Also, the Yang-Baxter
equations represent the conditions for the consistency of
the Bethe Ansatz' and require that t

~
J ~. Applying

the quantum inverse-scattering method' we obtain a set
of coupled algebraic equations6'6 for the electron rapidi-
ties jvj j, j =1, . . . , N, and the spin rapidities IA,j,
a = I, . . . , M (M is the "number of down spins" in the
solution):

v,
—A. +i/2
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P-1 Ap

—A —i
'

I'

v~ +i /2
' ~ .

v~ Ap+ i/2—
vi t/2 p~i vi Ap t/2

most one fermion. The dynamics is described by the t-J
Hamiltonian

—t'P g c;~~ P+J g (S; S~ n;n—j/4),
(i,j ),cr &i,j )

where the projector P Q;(I —n;tn;~) restricts the Hil-
bert space by the constraint of no double occupancy.
The symmetries of this Hamiltonian are U(1) gauge,
SU(2) spin, and lattice translational invariance. In addi-
tion, the model becomes supersymmetric at t J."'
The short-range nature of the interaction motivates the
following Ansatz' for the amplitudes
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FIG. 1. Electron rapidities in the complex plane: Crosses
denote the quantum numbers v,

'
describing kinetic degrees of

freedom, and solid squares denote the quantum numbers A' as-
sociated with spin degrees of freedom. (a) Ground state: Elec-
tron rapidities occur in complex pairs, v,'-A,' i/2, describing
singlet pairs of range 2/1n(1+A.' '). The parameter c deter-
mines the filling factor N/N, . (b) Holon-antiholon (h-h ) ex-

citation: A string at AI', is transferred to a higher-energy state
at A„'.. (c) Triplet (s-s) excitation: A string is broken up into
two real rapidities U, ,

and v, „eachof which is describing a spi-

non. The two spinons combine into a triplet excitation as one
of the spin rapidities A' has been removed. (d) Real-particle
(s-h) excitation: Removing one electron leaves the system in

an excited state with one holon at Aq and one spinon at v, . The
holon and the spinon account for the charge and spin degrees
of freedom, respectively, of the many-body state.

where 2vi =cot(ki/2) for t =J. For even N the low-

energy states are parametrized by a sea of two-strings in

the complex plane with v,
' =A,'+ i/2+O(e '). Taking

the logarithm of Eq. (1) we introduce the bare quantum
numbers I,', a =1, . . . , M =N/2, which specify the roots
of the equation. The I,' are integers or half-odd integers
and restricted to the interval

i I,' i
(I',,„=(N,—M

—1)/2. For arbitrary filling the number of available

quantum numbers I,' exceeds the number of actual two-

strings, so there is freedom in the choice of the set II,'j to
be occupied.

For the ground state, the I,' =I, ' are chosen symmetri-

cally with respect to zero, 0(I';„(iI, 'i (I',„.The
corresponding distribution of two-strings in the complex
plane is shown in Fig. 1(a). In the thermodynamic limit

(N, ~, N/N, =const) we obtain an integral equation
of Fredholm type for the distribution of the roots A,'. At
half filling, this integral can be solved in closed form and

the ground-state energy of the Heisenberg chain,
E/N = —2t ln2, is recovered. ' Away from half filling,

the integral equation has to be solved numerically: The
corresponding ground-state energy is shown in Fig. 2.
For all fillings N/N, the ground state is a liquid of sin-

glet bound pairs, where each singlet can be associated
with a two-string at A,'. The coherence length g of a

particular pair depends on the position A' of the associ-
ated rapidity, g

=2/ln(l +A,' ). In particular, the

ground state involves pairs of arbitrarily weak binding

energy (iA,'i ~) resulting in a gapless excitation

Q —0.5—
Cg

—1.0—
I I I I
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FIG. 2. Energy per particle E/2tN vs filling factor N/N, .

The ground state is a liquid of singlet pairs of varying range
described by complex pairs of rapidities; see Fig. 1(a). The
highest accessible state is the ferromagnetic state with real ra-

pidities v,
' and no spin rapidities A,'. The dashed line denotes

the lowest singlet state with real rapidities v,'. This state is

forced into a state with finite magnetization for a filling

N/N, ) 2/3 (dotted line). The overall width in energy de-

creases from the free-electron value 4t per particle for
N/N, 0 to 2t ln2 in the Heisenberg limit N/iV, 1.

spectrum. As in the attractive Hubbard model' ' the
ground state of the t-J model is parametrized by com-
plex pairs of rapidities. However, the physics is more
like that of the repulsive Hubbard model. There is no

jump in the chemical potential for adding one or two
particles and we do not observe any transition as a func-
tion of filling N/N, . Note that the repulsive Hubbard
model involves real electron and spin rapidities. For the
t-J model, real rapidities lead to an excited state as
shown in Fig. 2.

There are two types of elementary excitations, which
do not change particle number, involving (i) charge and
(ii) spin degrees of freedom: (i) Charge excitations
away from half filling involve the transfer of a particular
bare quantum number I/, C II, 'f to a previously unoccu-
pied state I&. above the pseudo Fermi surface at I';„.
This excitation transfers a charge e (not 2e) into a
higher-energy state but difers from the usual particle-
hole excitation in a Fermi liquid as no spin is involved.

According to Anderson's terminology for the strongly
correlated Hubbard model, ' we identify this excitation
with a holon (kink of charge 1) and the corresponding
spectrum with the holon-antiholon branch. The spec-
trum is obtained by solving the Bethe equations for the
rapidities A,' to order 1/N, . A shown in Fig. 1(b) the
electron rapidities v,

' and the spin rapidities A,' remain
aligned. The holon-antiholon spectrum is shown in Fig.
3. N/N, =2/3 marks the special filling (of high symme-
try) above which a gap in momentum occurs, excluding
excitations with momenta between 2z —3kF and 3kF
(kF =nN/2N, ). Keeping the antiholon fixed (e.g. ,

At', .=c) and moving the holon over the allowed parame-
ter range, we obtain the holon excitation spectrum with
an eAective Fermi surface spanning 4kF. With respect
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FIG. 3. Holon-antiholon (h-h ) excitation spectrum for
several values of the filling factor N/N, . Starting with

AJ, A„'e c [see Fig. 1(b)], branch a is obtained by moving
A„'~ to —c, branch P is due to moving Al', out to ~, y corre-
sponds to moving A„'~ back to c, and 8 completes the loop as Al',

is moved back to c. The branches 8 and 8' make up the holon
excitation spectrum spanning a Fermi surface of range 4kF
(kF rrN/2N, ). Note that a gap appears in momentum for
filling N/N, (2/3, where the Hilbert space starts to shrink
rapidly due to the constraint of no double occupancy.

to Fig. 1(b) we identify the boundaries c with the
pseudo Fermi surface for the holons.

(ii) The spin excitations, on the other hand, involve
the breaking of a pair with (triplet) or without (singlet)
spin flip. Here we restrict ourselves to the triplet excita-
tions for the case of an even number of particles. The
excitation consists in transferring a pair of complex roots
onto the real axis and simultaneously removing the spin
rapidity associated with the pair. As a consequence the
remaining spin rapidities A,' shift with respect to the
electron rapidities v,

' as shown in Fig. 1(c). Again the
excitation is two-parametric. At half filling the real ra-
pidities v„and v, , describe kinks of spin —, which com-

bine into a triplet (or singlet) excitation as shown by
Faddeev and Takhtajan for the Heisenberg chain. The
excitation spectrum shown in Fig. 4 is gapless for all
fillings. This is due to the presence of asymptotically un-

bound pairs, i.e., pairs of arbitrarily weak binding ener-

gy. Real rapidities iv, i )c embedded in the sea of
singlet pairs are identified with spinons as the corre-
sponding excitation carries spin and no charge. On the
other hand, isolated rapidities with i v, i

( c are associat-
ed with real-particle excitations (carrying both spin and
charge). Upon decreasing the filling N/N„ the spinon
excitation spectrum gradually transforms into a real-
particle excitation spectrum as shown in Fig. 4. We find

that the eff'ective Fermi surface for the spinons is at kF
[corresponding to the points v, = + Ix4 in Fig. 1(c)].

Finally, the real-particle excitation spectrum involving
a change in particle number is shown in Fig. 5. Remov-
ing a real particle near half filling leaves the system in an

FIG. 4. Triplet (spinon-spinon, s-s) excitation spectrum for
several values of the filling factor N/N, . According to Ref. 16
a triplet excitation is two-parametric, one parameter describing
a kink of spin f or spinon. For N/N, 1 the spectrum of the
Heisenberg model is recovered: The branches a, P, and y are
obtained by starting with v, , v, , ~ and moving v, ,

(a), v, , —~ (P), and finally taking v, , v, , together back to
~ (y); see Fig. 1(c). The branch a is the spinon excitation
spectrum spanning a Fermi surface of 2k'. The lowest (gap-
less) excitation is obtained by breaking a singlet pair at
A,' + ~, where the binding energy goes to zero. As
N/N, 0 the free-particle triplet excitation spectrum is

recovered.
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FIG. 5. Single-particle (s-h) excitation spectrum. Remov-
ing a particle leaves the system back in an excited state charac-
terized by a spinon s and a holon h; see Fig. 1(d). Top: holon
and spinon excitation spectra with Fermi surfaces at 2kF and
at k&, respectively. Bottom: combination of the s and h exci-
tation spectra into a real-particle (s-h) excitation spectrum.
The state at kF (3kF) is a combination of a 2kF holon and a
—kF (kF) spinon. The spectrum has been folded back into the
first Brillouin zone.
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excited state [see Fig. 1(c)]: The hole splits into two sol-
itonlike excitations, a spin- —, kink (spinon) and a spin-

less kink of charge e (holon). As in the strongly corre-
lated Hubbard model, the excitation spectrum goes
linearly to zero at i k i kF and at i k i =3kF.

In conclusion, we have determined the ground state
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and the elementary-excitation spectrum of the t-J model
for arbitrary filling N/N, ~ 1. We find that the repul-
sive on-site interaction dominates the attractive spin in-

teraction J. We believe that the model belongs to the
same universality class as the repulsive Hubbard model.
Therefore we do not expect a phase transition in the in-

terval 0( J/t ( 1. This is consistent with the renormal-
ized mean-field theory in one dimension by Zhang et
al. " The gapless excitations at 2kF (spin) and 4kF
(charge) produce long-range incommensurate spin and

charge correlations in the t Jm-odel. Schulz has re-

cently shown how to determine the asymptotic form of
the correlation functions using results of the Bethe-
Ansatz solution.
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