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Non-Abelian Geometric Phase and Long-Range Atomic Forces
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Using fully quantal methods, we investigate various manifestations of the geometric phase in bound
and free diatom systems. Adiabaticity and degeneracy are not invoked in the discussion.
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(2)

It is generally recognized that the fundamental con-
stituents of matter interact through the exchange of
gauge-field quanta. Recently, the concept of a gauge
field, or a nonintegrable phase factor, ' has found appli-
cation in systems other than fundamental ones. In an

analysis of the quantum adiabatic theorem, Berry" illus-

trated how a quantum state can, under certain condi-
tions, acquire a nonintegrable phase factor during an
adiabatic evolution. This phase factor, now commonly
referred to as Berry's geometric phase, has since been
observed in diverse physical systems. Wilczek and Zee
generalized Berry's analysis to include degenerate states
undergoing adiabatic evolution. They showed that such
systems can exhibit a non-Abelian geometric phase and

suggested, using quasiclassical arguments, that
geometric phases alter energy splittings in simple quan-
tum systems. Diatomic systems exhibiting non-Abelian
gauge-field structure have been explored previously; in

this Letter we illustrate how gauge fields, or geometric
phases, ' manifest as observable eAects in both bound
and free diatom systems. We show that, in addition to
altering energy splittings in bound systems, geometric
phases induce transitions in levels separated by a finite-

energy gap. An example is given where the non-Abelian

gauge field couples nondegenerate electronic levels in a
diatom. This gauge-field coupling gives rise to an ob-
servable eff'ect (A doubling). We show that when the di-

atom is "pulled apart" the non-Abelian geometric phase
mani fests as a long-range atomic force. Below we

present final results; the details will be published else-
where. '' Atomic units are used throughout.

The Hamiltonian for a diatomic system (after factor-
ing out the c.m. motion) is given by

Vtt+ H,d(R, r),1 (1)
p

where R is the internuclear radius vector between the
two atomic centers, p is the reduced mass of the system,
and all coordinates are taken with respect to a space-
fixed frame. H,d(R, r) is the adiabatic Hamiltonian; it
includes the kinetic energy of the electrons and all elec-
trostatic interactions. Its eigenstates, p„(R,r), are com-
plete with respect to the electronic or "fast" coordinates
for all values of the parameter R, and they form a repre-
sentation for the system. The total wave function can be
expressed by

+(R, r, t) =gts„(R,r)F„(R,t),

(4a)

(5)
where F(R) is the scalar wave function. V(R) is given

by

V(R) = (R)+ n '(R)+ B(R)
2pR 2p

where F„(R,t ) are expansion coefficients and are
eA'ective amplitudes for the nuclear motion. In applica-
tions only a finite, incomplete, set {M] of adiabatic states
is used. This approximation is sometimes called the
Born-Huang approximation, or the method of perturbed
stationary states. ' It is particularly well suited for sys-
tems where the distinction between "slow" and "fast"
degrees of freedom is unambiguous. Treating the nu-

clear amplitudes as variational parameters and + as a
variational wave function we get ''

[Vtt I —iA(R)] F+ V(R)F=i, (3)
2p at

'

where F {F„]is a column vector and A, V are matrices.
Their components are

A J(R) i&lit;
~
U(R)VRU '(R)

~ yt. ),
V~l(R)-&&1; ~HaQ~ltll)+ g A;k Ak, , (4b)1

2p kwij

where HaQ=H, d(r,
~
R

~
i), i is the unit vector along the

z axis of the space-fixed frame, and
~ p ) are the eigen-

states of Hq~. We call them Born-Oppenheimer states.
They are specified, among other quantum numbers, by
the value of the electronic angular momentum, A
(throughout, we assume integer values for A, the more
general case is discussed in Ref. 11), along the z axis.
The adiabatic states are related to the BO states by a ro-
tation U(R) so that p„(R,r) =U '(R)

~ &t„), and
U(R)H, dU '(R) =Hao. Equation (3) possesses uni-

tary gauge symmetry [U(M) group], and A, V are the
3+1 components of the gauge field. For a complete set
the second term in (4b) and the spatial components of
the field strength tensor vanish identically. " In this
case one can always find a gauge (pure gauge) where the
vector potential also vanishes. However, for an incom-
plete set, {M], nontrivial gauge fields are induced; i.e.,
the Wilson-loop integral is not unity for an arbitrary
closed circuit in R space. We illustrate this below.

In the one-state approximation (Born-Oppenheimer
approximation) (3) becomes

[VR —t A(R)] F'(R, t)+ V(R)F(R, t) =t
2p 81
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b(R) is the Born-Oppenheimer eigenvalue, 0 (R)
=(pI L„+L» I p&, where L„,L» are the angular momen-
tum operators of the electrons, and 8(R) is the radial
component of the nonadiabatic correction

n'

where the sum is over all states excluding I p&. 8(R)/2p
is usually small and we absorb it into the definition of
e(R). We assume that b(R) describes a potential curve
containing a deep attractive well. Bound vibrational
states exist for such a potential and we can approximate
the well by a harmonic-oscillator potential near, R*, the
equilibrium value of the internuclear separation. To cal-
culate the rotational structure of the bound diatom we

evaluate the vector potential (4a). In order to obtain a
nonsin gular vector potential in the fixed coordinate
frame we divide the region into two overlapping hemi-
spheres (sections) R„Rb corresponding to the north-
ern and southern polar regions, respectively. %e choose

U = exp( ~ i &L, )exp(i8L» )exp(i&L, ),
where -+ identifies regions R, and Rb, respectively, and
8, p are the polar and azimuthal angles of R in the
space-fixed coordinate system. Using (4a) we get

A =i(&A I U(R)VttU '(R)
I pA& =A/ . . (7)

sinO

The vector potential (7) is that of a "magnetic" mono-
pole with charge A located at the origin. In the field of
such a monopole the mechanical angular momentum of
the rotating nuclei is no longer conserved, but the total
angular momentum

J =N+x,
where N Rx —iVg and

1+cosO
Z =Acosp

sinO

1 + cos8
sinO

is conserved. Because J is a constant of the motion the
nuclear amplitude can be expanded in terms of the
eigensections, YJM (8&), of J and J, . These eigensec-
tions are the monopole harmonics described in detail by
Wu and Yang. ' To obtain a stationary state of (5) with

energy E we let

obtain an expression for the rotational eigenvalues eJ~.
For a given vibrational level, v, we get

rJM =8 J(J+1)—A 1—1

Ic
(10)

where the subscripts are the isospin components and

identify the amplitude for the system to be in the corre-
sponding electronic state. The gauge potentials are
operators in isospin space and are given by'' (we use the
notation of Ref. 9)

Ae x(R) [8»cosp a 8„sing],
(12a)

A& 8, (cos8-t 1) —x(R)sin8[cr„cosp ~ 8» sing],
~here

AIc=
2pR +2 i1 2(R + )

where the allowed values of J are IAI, IAI+1, . . . .
These are the rotational eigenvalues of a symmetric

top. ' In the formalism presented here the coupling of
the nuclear and electronic angular momenta, that give

rise to the rotational structure (10), is mediated by a
"magnetic" monopole gauge field. In addition to the

monopole contribution to spectrum (10), there is also a

contribution resulting from an induced scalar potential

given by the second term on the right-hand side of Eq.
(4b). Spectrum (10) is an observable consequence of the
presence of the background Abelian gauge potentials

coupling to the rotating nuclei.
We assume that e(R) represents the potential curve of

a tr (IAI 1) electronic state of a diatom that dissoci-

ates to an ion and degenerate p-state atom. At large in-

ternuclear separations this potential curve is degenerate
with the potential curve of a Z (A 0) state. For high

vibrational quantum numbers, U, and in the continuum

region, the single-channel Ansatz is no longer adequate,
and we must include the degenerate x and Z states in

Ansatz (2). Now the effective nuclear amplitude is ex-
pressed as a vector in an abstract "isospin" space,

F,(R)
F(R)-=F,(R)

F,(R)

FJM(R)F(R) =g YJM(8y)
JtM R

where

J YJM =J(J+ 1)YJM, J, YJM =MYJM,2

to get
r

d FJM J(J+1)—A + Q (R)+ FA
2p dR2 2pR

(9a)

(9b)

0
8, = 1 0 0

0 0,

0 0 0
8, = 01 0

,0 0 —1,

are spin-1 matrices,

1
0'y =

Jz
0 0
0 0,

(12b)

+ E(R)FMJ —EFMJ . (9C)

Using (9c), and the clamped-nuclei approximation, we
x(R) —=

I (Z
I
L„—iL» I x& I,1

2
(12c)
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and the + notation refers to sections R, and Rb, respec-
tively. Using (12) we obtain the effective Hamiltonian
for F(R),

H =Hp+ xH] .

isospin space, and

L+=" ' a
ae

L i +- 8
88

. ai + (cos8+. 1)8,
sin 8 By

. ai + (cos8+. 1)8,
sin 8 8$

(is)

We introduce isospin monopole harmonics, Yi~(8&),
with the properties

J Yg~ J(J+1)Yg~, J, Yg~ =MY'~,J2 «2+
+ + W(R);

2pR z YJM +YJM, c YJM 2YJM .A A -2 A A

We also have"

8+L+ YJ~ [(J—A)(1 +J+A)] '
YJM

J N+Z, where now Z is given by (g) with A replaced
by the 8, matrix, 0 is a diagonal matrix with entries
0;; (p; i L„+L» i p;), and W(R) is diagonal with the
entries e;(R) corresponding to the Born-Oppenheimer ei-
genvalue for the ith electronic state. The interaction
term, Hi, is given by

and

8 L Yi~ —[(J+A)(1+J—A)] 'i Yg~

provided that the triangle relations for J, M, and A are
satisfied. Because H commutes with J and J„"we ob-
tain an eff'ective Hamiltonian for the radial nuclear
motion by expanding

JMA

8 —L ——8+L+ (i4)H, -
R

F
where 8+,8 are the raising and lowering operators in

to get

d FJ~ J(J+1)I 8, + 0 —- x(R)[J(J+1)]ii2
+ + W(R)—

2 &x FJM =EFJM,
2p dR2 2pR2 pR

where FJ~(R) is now a radial isospin vector, its isospin components corresponding to the ones in definition (11). Using
the clamped-nuclei approximation and neglecting the term proportional to ir(R), we obtain the spectrum (10) for E
well below the dissociation limit ez(~). Because of the degeneracy of the z electronic states the bound rovibrational
states are doubly degenerate. When the term proportional to x is included as a perturbation the degeneracy is removed
in second order, and the levels are split by the amount

4g2 2J
&I 'JA P Ct'J

I A i I ~

where i vAJM) is a ~ibrational eigenstate of Hp and e,,;&
its eigenvalue. This is the familiar example of A dou-
bling. ' In the formulation presented here it is a mani-
festation of a non-Abelian geometric phase; i.e. H| arises
from the coupling of the non-Abelian gauge field (12a)
with the nuclear motion. The non-Abelian nature of the
+ n-Z state coupling is apparent when the field strength
tensor component, Fe~, is evaluated:9

Fw, [x. (R) —1]sin8cr, . (i 9)
The electrostatic interactions of the electrons with the

nuclei break the spherical symmetry of the electronic
states, and the ir parameter (12c) is not unity. Thus, for
finite R, the field strength tensor (19) does not vanish
and, because x is not quantized, gauge field (12a) is
"truly non-Abelian. " In the asymptotic limit R
the electronic states correlate to atomic states centered

at one of the nuclei. The triply degenerate atomic states
form a representation of the rotation group and, in this
limit, the x parameter tends to unity and F~& vanishes.
Therefore, the field strength (19) describes a non-

Abelian, monopolelike, object and K acts as a monopole
"charge" screening parameter. For the nondegenerate
triplet discussed above we obtain a truly non-Abelian
monopole for integer values of A ( i A i

= I).
We choose a new gauge so that

A' =U 'AU+i U 'VRU,

where

U = exp( T i & 8)exp(i 88)exp(ip 8),

and +- refer to the sections R, and Rb, respectively. In
this gauge the vector potential is"

Aq = [K (R) —1](8„sing+ 8r cosP), A~ = [1 —«(R) ] [ —8, sin ~8+ cos8sin8 (8„cosp+ 8r sing)] . (20)
We note that the components in (20) vanish as R ~. In this gauge the conserved angular momentum is
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J' =U ' (N+ X)U =N+ o, and the transformed Ham iltonian is

I 1 ti t) N 1
—«'(R) I —«(R) - " [I —«(R)]

(21)

Expression (21) is valid for all R but, here, we use it to
study the asymptotic limit of the ion-atom interaction.
For large R, d(R) —Q/R3, where Q is proportional to
the quadrupole moment of the atom. ' Thus, in the
asymptotic limit, H, t. .. represents the well-known

quadrupole interaction between an ion and atom. ' How-

ever, we also get higher-order terms proportional to the
non-Abelian parameter x. Using perturbation theory we

get the asymptotic expansion"

x(R)—I + +C
R4 (22)

where C is a constant and is on the order of an atomic
dipole polarizability. '

Using (22) in (21) we obtain a spin-orbit-type poten-
tial

V C N

p R' (23)

valid at large internuclear separations. In addition to
(23), we also get higher-order corrections to the quadru-
pole potential. The effects of this potential should be
seen in the profiles of collision-broadened lines found in a
gas at low temperatures. The above analysis is also valid

for a treatment of Rydberg systems. For a Rydberg
atom with a p-state core, the Rydberg electron interacts
with the core via a term analogous to (23) (where now

p 1). In addition to the quadrupole electron-core in-

teraction, ' this interaction influences the rotational
structure of the Rydberg levels.

The "spin-orbit" interaction (23) is a direct conse-

quence of the coupling of the relative nuclear motion
with gauge field (20). We can use the effective Hamil-
tonian (21) to analyze the slow collision of an ion with a
p-state atom. At finite collision velocities, the dynamic
phase' induces transitions among the sublevels of the
atom. However, because of the gauge-field coupling
(20) connecting the different sublevels, transition proba-
bilities also depend on the geometric phase. '
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