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Fourier’s Law and the Green-Kubo Formula in a Cellular-Automaton Model
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The properties of energy transport are numerically investigated with the use of a one-dimensional
cellular-automaton model called 26 R. The validity of Fourier’s law and the Green-Kubo formula for
thermal conductivity x is demonstrated for this model in the limit of large systems. Nonlinear correction
to Fourier’s law and the recovery of left-right symmetry are also discussed.

PACS numbers: 05.60.+w, 05.20.—y

To derive Fourier’s law of heat conduction from dy-
namics remains an outstanding problem in statistical
mechanics.! In a rigorous sense, it has been satisfactori-
ly performed only for the Lorentz gas in the Boltzmann-
Grad limit.? Perturbation theories to harmonic crystals
failed to reproduce a thermal conductivity independent
of system size. Only recently some numerical investiga-
tions appeared to suggest the convergence of a thermal
conductivity in a thermodynamic limit or the validity of
the Green-Kubo formula for some models with large
nonlinearity.?>~> Since these models are rather compli-
cated, it is valuable to find a simple model system of heat
conduction.

In this Letter, I present a cellular-automaton model
called 26R, which manifests Fourier’s law and the
Green-Kubo formula. This model is apparently simple
and purely deterministic. Neither a random nor a sto-
chastic element enters into the definition of the dynamics
except a possible contact with heat baths at the ends of
the system. Moreover, all constituents involved in the
model take discrete values. Hence, it is handled easily
with a digital computer and errors by truncation or
roundoff cannot occur. The study of heat conduction
properties in cellular automata was first suggested by
Pomeau.® In this respect, the present study may be
viewed as a realization of his proposal. In general, cellu-
lar automata can be very good models to examine how
statistical-mechanical concepts arise from microscopic
dynamics.

Rule 26R is one which belongs to a family of one-
dimensional cellular automata called elementary reversi-
ble cellular automata (ERCA)."® An ERCA has two
Boolean variables per site which evolve according to a
rule written in the form

o/t =f(o!-\,0!,06{+) XOR S/, (1a)
&t =g/, (1b)

where o/ and &/ denote the state of site / at time ¢ each
of which takes values in the set {0,1}, XOR is the “‘ex-
clusive OR” operation, namely u XOR v=u+v—2uv, and
f:10,1}>— {0,1} is a Boolean function of three variables.
This function f determines the rule, and in particular

SO,u,v) =r+v—puv—2Av+Aruv for rule 26R; indeed
o 2P e, u,v) =26. The reversibility of the
dynamics is evident.

Energy is introduced for rule 26R as the additive con-
served quantity @ defined by

' =3 F(o!,0{+1,6/,6{+1) (2a)
==Z_{(O',""()"\,‘14-])2'*'(C)','I+|_'(i\',")z} . (2b)

This quantity is not only conserved but also satisfies the
equation of centinuity:

Fith =Flio +J=Jl, (3)

where F!;+) =F(o},0!/+1,6{,6{+1) is the energy at time
t at bond (i,i +1) and

J,’l=(l—26',")(0','1—|_O',"+|)f(0'[’—|,0'i',0',"+|) (4)

is the energy flux at time ¢ at site ;. The preservation of
phase-space volume is verified from the reversibility of
the dynamics and the discreteness of the states. There-
fore, regarding ® as a Hamiltonian, one can construct
the statistical mechanics of the model. As a result, the
relation between energy per site ¢ and inverse tempera-
ture B is obtained as

B=Inl(2—¢)/¢l. (5)

Consider a chain of rule 26 R with N sites under the
periodic boundary condition. It has already been
confirmed that this system realizes equilibrium thermo-
dynamic behavior when N is large.” If one divides the
chain into the sum of a subsystem consisting of a number
(< N) of sites and the remaining part, which is regarded
as a heat bath, the energy distribution of the subsystem
becomes a canonical one. Thus, temperature is experi-
mentally defined for this system and its values agree well
with those given by Eq. (5). It has also been observed
that time and ensemble averages yield the same results
within the accuracy of calculations. Moreover, relaxa-
tion to the equilibrium state occurs in a short time.’
Thus, this system shows good microcanonical properties.

In the numerical experiments of energy transport, sto-
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chastic heat baths are attached to both ends of the chain
in place of the periodic boundary condition. At every
time step, after the updating of sites 1 through /V accord-
ing to the rule (1), sites 0 and /V +1 choose their values
with the conditional probabilities such that

P(O’o,(j’ol(‘ﬂ,&])ﬁcxp[-ﬂLF(Uo,dl,&o,d’))], (68)
P(on+1,6n+1] oN,GN)
xexpl—BrF(on,on+1,6n,6n+1)],  (6b)

where 8, (=7,"') and Br (=Tx ') denote the inverse
temperature at the left and right ends, respectively. If
one sets 8; =fg, the equilibrium behavior is again real-
ized in almost the same manner as in the periodic chain.
The only difference is that the present case is canonical
with given B, whereas the case of the cyclic chain is mi-
crocanonical with given ¢. This realization of the equi-
librium behavior guarantees that the above heat-bath
procedure works well. In these equilibrium situations,
there is, of course, no temperature gradient and the ener-
gy flux vanishes on the average. On the other hand, if
Br#PBr, after some transient the system comes to a sta-
tionary state where the transport of energy occurs. Fig-
ure 1 illustrates the temperature gradient formed in the
system under such a condition. Here the temperature T
(=pB"") at bond (i,i +1) has been determined via Eq.
(5) from the observed value of the mean energy at the
bond. The energy distribution at each bond is only
slightly deformed from the canonical distribution of cor-
responding temperature to support the heat current.
Thus, local equilibrium holds for this system. Remark-
able in Fig. 1 is the fact that the temperature jump at
the ends of the system is very small. It can be observed
in the system of N=100, but is hardly seen when
N=200. This property is a distinctive characteristic of

0 20 40 60 80 ; 100

FIG. 1. Temperature gradient formed in the system. Solid
circles indicate local temperatures when 7, =0.5 and Tg =2.0
(shown by the crosses). Triangles are the result with the tem-
perature values of the heat baths interchanged, which are
displayed left-right inverted for convenience. These data were
obtained by time average with 107 iterations. The system size
is N=100.

rule 26 R. Other rules in ERCA’s do show a temperature
jump, if they can form a temperature gradient. Indeed,
most of the rules cannot so much as form a temperature
gradient. Figure | also shows that the profile of the local
temperatures is not a straight line and that it varies when
T, and Tg are interchanged. The former implies a
strong temperature dependence of the thermal conduc-
tivity: The lower the temperature is, the larger the con-
ductivity is. The latter is an outcome of the lack of
reflection invariance in rule 26 R.

Using the above implements, I have checked the valid-
ity of Fourier’s law

(J)=—«kVT. )

The temperature gradient VT has been evaluated locally
around points showing local temperature 7=1.0 under
various imposed temperature values of the heat baths.
At the same time, the average energy flux (J) has been
calculated as the time average of Eq. (4). The result
thus obtained is displayed in Fig. 2, which exhibits a
finite slope at the origin. The negative of this slope
yields the thermal conductivity, estimated at x=0.214
+0.010. Away from the origin, one can observe a cer-
tain systematic deviation from linearity. This indicates
the existence of a higher-order nonlinear correction to
Eq. (7), e.g., terms proportional to (VT)?2, (VT)3, etc.
The figure is not symmetric with respect to the origin be-
cause rule 26 R has no reflection invariance as has been
stated. However, this symmetry is macroscopically re-
stored in the linear regime, namely in the limit of large
systems for fixed values of the boundary temperature.
This is quite analogous to the recovery of isotropy at low
Mach number in lattice-gas automata on a hexagonal
lattice. '°

It is necessary to study the N dependence of the ener-
gy flux in order to certify that a system has normal heat
conduction properties. Equation (7) is equivalent to

N == [ " k(T . ®

Thus, if Eq. (7) is exact, the left-hand side of the above
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FIG. 2. Average energy flux (J) as a function of the local
temperature gradient VT at the point with 7=1.0. Five trials
each of 2x10° iterations for the system of size¢ N=101 have
been done for each point.
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equation should not depend upon N when 7, and Tg are
fixed. However, if nonlinear correction exists, N(J)
should vary as const+O(| Tg — T, |/N). I have com-
puted this quantity for a set of values 7T, and Tk and the
values interchanged. Because of the lack of left-right in-
version symmetry in rule 26 R, these two cases generally
yield different magnitudes of the flux. However, as ob-
served from Fig. 3, in both cases the absolute values of
the flux converge to the same value in the limit of large
N. This result establishes the validity of Fourier’s law in
the large-N limit. Most of the deviation at relatively
small NV is attributed to the nonlinear correction to Eq.
(7). That is, the flow (J) converges rapidly into intrinsic
bulk behavior represented by a function of 7 and VT but
not of N. When N is made large with fixed boundary
temperature values, there only remains the first term of
the function expanded with respect to V7T, which is just
Fourier’s law (7). In Fig. 2, actual finite-size effects are
distinguishable only for N =< 20 and the bulk behavior
dominates the system even for N =50.

The Green-Kubo formula expresses transport coeffi-
cients as integrals of autocorrelation functions in equilib-
rium states. Applied to the present case, the thermal
conductivity is represented as

1
T2

K=

s ey |1-22], ©)
2

=0

where J(t) =X /L J!, angular brackets denote an equilib-
rium average, and the factor 1 —&,0/2 is necessary be-
cause of the full discreteness of time.

To evaluate Eq. (9), I have calculated the energy-flux
autocorrelation function (J(0)J(¢)) for two types of
chains, one with the periodic boundary condition and the
other with heat baths at its ends. In the cyclic or micro-
canonical case, the total energy has been chosen so as to
make the inverse temperature B determined by Eq. (5)
closest to 1.0. In the canonical system in contact with
the heat baths, the inverse temperatures of the heat
baths have been set as B; =Bz =1.0 at both ends. These
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FIG. 3. Absolute values of the average energy flux multipled
by the system size, NV |<J)|, as a function of N. Temperatures
of the heat baths are fixed to 7, =2.0 and Tg =0.5 (solid cir-
cles) and T, =0.5 and Tr =2.0 (triangles).
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two cases have yielded the same result for the autocorre-
lation function within the accuracy of the calculation.
However, fluctuation in the data obtained is large for the
system with the heat baths compared with the cyclic
chain. This is just a general distinction between canoni-
cal and microcanonical ensembles. In regard to the N
dependence, the normalized autocorrelation function
N ~XJ(0)J(t)) obtained for N=100 is almost un-
changed for larger N in both types of systems. This rap-
id convergence provides further evidence that bulk be-
havior is predominant even for relatively small N. The
result for the microcanonical case with N =2000 is
displayed in Fig. 4. The energy-flux autocorrelation
function shows a fast damp for small z and a negative ex-
ponential tail for large ¢, which is manifested by the
semilogarithmic plot of the inset in Fig. 4. Consequent-
ly, the convergence of the series in Eq. (9) is satisfactory,
which results in k=0.213 £0.005. This result agrees in
an excellent manner with the value determined via
Fourier’s law mentioned earlier. Thus, the validity of the
Green-Kubo formula has been confirmed for rule 26RR.
The fact that the Green-Kubo formula holds for rule
26R means the realization of thermodynamic fluctua-
tions in this model. Since equilibrium and relaxation
properties have already been established for this model,
rule 26 R exhibits all of what is generally called the ther-
modynamic behavior.!! Thus, this model will provide a
valuable example for the investigation of the origin of
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FIG. 4. The normalized energy-flux autocorrelation func-
tion calculated for the system with the periodic boundary con-
dition. The solid circles denote the average values over twenty
trials each of 10° iterations for the system with N =2000 and
®=1076, which yields =0.9997 via Eq. (5). Inset: Semilog-
arithmic plot of the same quantities.
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the thermodynamic behavior. In rule 26R, the energy
can be regarded as particles. Such a particle propagates
with a constant speed by itself, and its velocity varies
through collisions with other particles. Because there is
no quantity corresponding to momentum in rule 26R, a
collision changes not only the velocity of each particle
but also the total velocity. This is in contrast to the fact
that a solitonlike solution can hardly change its motion
in Hamiltonian systems.!? This may be the reason why
rule 26R can show such beautiful properties of the
thermal conductivity. A detailed analysis of the scatter-
ing rule will be reported elsewhere.

In summary, I have numerically proved that the
cellular-automaton model 26 R manifests normal heat
conduction properties. The energy flux is proportional to
the local temperature gradient in the stationary local
equilibrium states, which is Fourier’s law. The thermal
conductivity at =1.0 was calculated as the negative of
the slope at the origin of the energy flux versus the local
temperature gradient. In the large-N limit, the energy
flux was shown to be proportional to N ~'. This is evi-
dence that the thermal conductivity depends only upon
temperature in the thermodynamic limit. Moreover, it
was shown that convergence to bulk behavior is achieved
in a relatively small system. The thermal conductivity
was independently calculated via the Green-Kubo formu-
Ia from the equilibrium energy-flux autocorrelation func-

tions and the value shows excellent agreement with that
from Fourier’s law. It is concluded from these observa-
tions that this model is a thermodynamic system.
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