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Nonlinear Dynamics of a Forced Thermoacoustic Oscillation
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A spontaneous acoustic oscillation of a gas column induced by temperature gradients is periodically
perturbed by an external force. Nonlinear coupling between two oscillating modes can generate abun-
dant nonlinear phenomena, quasiperiodicity, frequency locking, onset of chaos, and quenching
phenomenon. Adjusting the frequency ratio to the golden mean, we study the scaling universality for the
quasiperiodic transition to chaos. The first experiment in acoustics demonstrates that thermoacoustic
systems follow universal scaling properties of the circle map in spite of the complexity of the system.

PACS numbers: 47.25.Ae, 05.45.+b, 43.90.+v

Universal scaling properties for the quasiperiodic tran-
sition to chaos have been predicted by the circle map. '™
No matter how complex physical systems are or even if
basic equations characterizing nonlinear systems are not
known, the behaviors of the system at the onset of chaos
may be able to be effectively described by scaling univer-
salities predicted by the map. The relevance of predic-
tions has been tested and supported in a few experimen-
tal systems, Rayleigh-Bénard convection,* and solid-
state physics.»® There exists, however, an experimental
system with distinct deviation from the universalities
predicted by the circle map.’

The experimental system attracting our interest is a
hydrodynamic one called “Taconis oscillation”® in ther-
moacoustics. When a gas column confined in a long tube
is subjected to strong temperature gradients, it spontane-
ously oscillates with considerable amplitudes (~10* Pa
or more). Theoretical studies, especially stability anal-
ysis, have been carried out by Rott.® We would like to
determine whether the scaling universalities predicted by
the map are applicable to such complex thermoacoustics.
In a previous Letter,'® we reported that two or three
different oscillatory modes of a gas column can be simul-
taneously induced in a tube and competition between
them leads to quasiperiodic and chaotic oscillations. By
substituting the external excitation for one of two com-
peting modes, we can investigate the universal properties
for the quasiperiodic transition to chaos at any desired
winding number. In this Letter, we will present some ex-
perimental evidence in favor of the applicability of the
map to thermoacoustics under a particular value of the
winding number, the golden mean o=(/5—1)/2. Still
more, which variable of the map corresponds to the ob-
servable of experiments, hydrodynamic variable, the an-
gle or its projection? We will also give some explanation
for this question argued by Fein, Heutmaker, and Gol-
lub* by examining the universal form of the power spec-
trum. This Letter is the first experimental report on
scaling universalities for the quasiperiodic transition to
chaos in acoustic systems of a fluid.

The experimental arrangement was shown in previous
papers.®'% A gas is contained in a long stainless-steel

tube (whole length 2.8 m, inner radius r=1.2 mm) with
a symmetrical steplike temperature distribution along its
axis. Both ends which are at room temperature Ty are
closed by a small pressure transducer and a stainless-
steel dynamic bellows, respectively. The cold part,
smoothly bent as U shaped near the midpoint of the tube,
is immersed into liquid helium (7¢=4.2 K). The work-
ing gas is helium. The ratio of the tube lengths of the
cold part to the warm, &, plays an important role to limit
the number of modes thermally induced; two and three
different modes are simultaneously excited for £=0.5
and 0.3, respectively, because of the intersection of their
stability curves. For & larger than 1, higher modes are
hard to excite and frozen out, and only the fundamental
is singled out as an excited mode. Thus the value of & is
1 in our experimental design. A woofer speaker (to
which an ac voltage with frequency f, through a power
amplifier from a synthesizer is applied) is attached to the
bellows. This can produce a simple harmonic oscillation
of a gas column. Thus the thermally driven oscillation
can be dynamically coupled with the one mechanically
driven under the desired winding number. We could
tune the winding number to the golden mean within the
accuracy of 10 % The signal voltage was digitized by
12-bit analog-to-digital converters. Two types of time
series of 16384 points sampled by a suitable time and an
external driving frequency were analyzed by a computer
in order for us to obtain detailed power spectra and
strobed attractors. The phase-locking states were ascer-
tained by direct observations of the Poincaré section in
real time. We could easily search the 3 locking state
on a display unit.

The amplitude of Taconis oscillation is controlled by
two dimensionless parameters,” the temperature ratio
Tu/Tc, and R=r-/a./a.l., where a. and a. are adiabat-
ic sound velocity and thermal diffusivity of the gas at the
cold part, respectively, and /. is a half tube length of the
cold part. Keeping the temperature ratio constant
(=70.4), we increase R by a gradual increase of the
density of the gas. After R goes beyond the critical
value R, (=14.4) a gas column spontaneously begins to
oscillate with the frequency fo. We chose R=17.2,
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where the oscillation has a high enough amplitude for us
to observe the onset of chaos. In Fig. 1(a) we show the
spectrum of Taconis oscillation with no external force.
Adjusting the “dressed winding number” to a constant,
the golden mean, and keeping the control parameter R
fixed, we gradually increase the external amplitude. In
Figs. 1(b) and 1(c), we show power spectra well below
and just at the critical point, the nearest point to the on-
set of chaos. With the approach to the critical point, the
spectrum shows an increase of visible noise floor in addi-
tion to the increase of higher-order mixing components.
The determination of the transition to chaos was also
confirmed by the drastic change of the Poincaré section.
Figure 2 shows strong subcritical and just-critical Poin-
caré sections corresponding to Figs. 1(b) and 1(c), which
are reconstructed from time series V() strobed with the
driving frequency and are nonintersecting in embedding
three dimensions. The Poincaré section is a well-defined
closed loop with no fold for the subcritical, and just
above the critical point wrinkles start appearing on the
section and the invariant two torus is just broken down.
In general, nonlinear systems tend to display more
complicated behavior as they undergo harder external
perturbation. Our experimental system, however, never
exhibits this tendency. After the onset of chaos is
achieved, further increases beyond a value of the exter-
nal amplitude never lead to a further increase of the
number of combination peaks, but decrease of the num-
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FIG. 1. Power spectra of pressure fluctuations: (a) Taconis
oscillation with no external force, (b) quasiperiodic, (c) onset
of chaos, and (d) quenching phenomenon.
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ber of them in spite of enough large amplitude; and still
more, the excitation tends to dominate a flow in the sys-
tem. The external amplitude has some band dependent
of R for observation of chaos. For smaller R where the
amplitude of the instability is not so large, quasiperiodi-
city and frequency locking are observed, but the number
of the linear combination peaks is small and chaos can
be never observed. As the external amplitude goes over
a critical value, Taconis oscillation is quenched by the
external force. Then the spectral peak of the instability
begins to fall in and at last vanishes. This is shown in
Fig. 1(d). The excitation also starts to dominate a flow
completely in the system. It bears a striking resem-
blance to the phenomenon reported in a forced Ray-
leigh-Bénard convection. Stavans'! has predicted that a
multicritical point exists in a generalized parameter
space with the amplitudes and the frequencies of two os-
cillators and the stable critical points for the onset of
chaos can be observed only in the large-amplitude re-
gion. In order for the quasiperiodic transition to chaos
to be observed, the selection of the instability amplitude
larger than a critical amplitude dependent of the winding
number is required in addition to the limitation of the
external amplitude. Quenching phenomenon has been
indicated in the self-excited system to which a periodical
external force is applied; for example, a forced van der
Pol equation.

The scaling universality predicted by the circle map
can be seen in the power spectrum at the critical point. '
The spectrum for the rotation angle of the map has a
self-similar structure and its envelope is scaled by the
power law f? when the winding number is fixed at the
golden mean. Previous experiments*® have supported
this scaling power law. To confirm this, we reconstruct
the critical power spectrum shown in Fig. 1(c). The re-
sult is represented in Fig. 3(b), where the power divided
by f? is plotted on logarithmic scale for the frequency
axis. The result demonstrates the self-similar structure
and the scaling with f? in the low-frequency region. At
least the envelope of the spectral peaks for the first gen-
eration (labeled 1), which is all linear combination of fo

v(t+fe)
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FIG. 2. Experimental Poincaré sections projected onto a
plane: (a) subcritical and (b) critical corresponding to Figs.
1(b) and 1(c), respectively.
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FIG. 3. Scaled power spectra: (a) subcritical and (b) criti-
cal corresponding to Figs. 1(b) and 1(c), respectively.

and f, with successive coefficients of the Fibonacci se-
quence for the seed (1,1), is found to be approximately
constant in height. Peaks of the first generation can be
recognized up to o’ in spite of no averaging. Other spec-
tral peaks (labeled by 2,3,...) generated from Fibonacci
sequence for different seeds do not seem to have the
same height. This may be attributed to a slight devia-
tion from the criticality. The experiment seems to sug-
gest that the observable, hydrodynamic variable, corre-
sponds to the angle of the map rather than the projection
along an axis in the phase space, whose critical power
spectrum varies as f* scaling power law in the envelope.
Fein, Heutmaker, and Gollub* and Mori,'? however, in-
dicate that the observable of experiments should corre-
spond to the projection of the angle rather than the angle
itself. This problem may be solved by the analysis of the
power spectrum below the critical point, where the en-
velope follows the scaling with a different power law.
The scaling of the power spectrum for the subcritical has
not been reported in previous experiments. The power
spectrum in Fig. 1(b) scaled by f* is shown in Fig. 3(a).
The spectrum for the subcritical follows the scaling with
f 4 at least for the first generation, instead of that with
f? for the criticality. As the system approaches the on-
set of chaos, the scaling power law changes from f* to
/2% Such a change should be attributed to the drastic
change of the Poincaré section. Antoranz and Mori'?
have theoretically studied the power spectrum of the
Cartesian coordinate of the intersection point on the
Poincaré section, using a linear map for the rotation an-
gle and the simplified model for the radius of the point
characterizing wrinkles on a torus. They have predicted
that the spectral peaks at low frequency follow the scal-
ing with the power law f2 or f* according to whether the

Poincaré section has sharp or mild wrinkles. The change
of the scaling power law observed can be explained by
their model. Thus our results demonstrate that the ob-
servable of experiments does correspond to the projection
along an axis in the phase space.

Phase-locked regions ordered in the ratio of the adja-
cent number of the Fibonacci sequence with the seed
(1,1) were drawn up according to Farey composition
(not shown here). They were a typical diagram known
as “Arnol’d tongues” predicted by the circle map. We
focused our attention on the locking structure, the widths
of tongues along the critical line. Sweeping the driving
frequency around the golden mean under constant exter-
nal amplitude and monitoring the Poincaré section, we
measured the distance S (55.79-57.77 Hz) between two
locked-band parents (3:5 and 5:8) and the distance S
(55.79-56.60 Hz) and S, (56.76-57.77 Hz) which are
interval lengths between the daughter band (8:13) and
two parents, respectively. The tongues are predicted to
form a Cantor set along the critical line. The fractal di-
mension D of the set is estimated from the equation
(S1/8)°+(S,/S)P?=1. We obtained D =~ 0.89 with an
experimental error of 0.02, which is close to the
theoretical value? of 0.868.

A global scaling property of the attractor is described
by the multifractal spectrum? f(a), which is a fractal di-
mension of the set of the singularity with scaling index a
of the measure. In order to efficiently calculate f(a)
from short data sets we used an indirect method,
recurrence-time approximation, proposed by Jensen et
al.* The probability P;(/) that other points fall within a
small distance / of a given point i on the attractor was es-
timated from the inverse of the averaged recurrence time
m;(l). According to whether the concentration of the
point is high or low, the recurrence time is short or long.
We determined f(a) using the relation {(m;(1)' 9 ~1I",
for small distance /, where the angular brackets show the
average over all points (~3000 points) on the attractor
(Fig. 2). For many values of g, the values of 7(g) were
determined by fitting the log-log plot of {(m;(/)' ~9) vs [
to a straight line. The f(a) spectrum was calculated
from 7(g) through the Legendre transformation.> The
results are shown in Fig. 4, where solid and open circles
are for the critical and subcritical attractors in Fig. 2, re-
spectively. Large experimental error bars at the right-
hand branch corresponding to rarefied regions are attri-
buted to the variation of the fitting range of /. The solid
curve is the theoretical f(a) spectrum by the sine circle
map at the critical point. The experiment supports that
the Taconis oscillation belongs to the same universality
class as the circle map in spite of the complexity of ther-
moacoustics. A small deviation from the criticality takes
place at the drastic change of f(a). f(a) for the sub-
critical shown in Fig. 4 corresponds to that for e~ 103
deviation from the criticality according to the theory of
Arneodo and Holschneider. '

Thermoacoustic phenomena® have been studied for
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FIG. 4. Experimental f(a) spectra for the subcritical (O)
and critical (@). The solid curve is the theoretical f(a) pre-
dicted by the sine circle map with the golden-mean winding
number at the onset of chaos.

more than two centuries. The progress of the investiga-
tion was not speedy because of great complexity and for
lack of systematic experimental work. Recently, there
has been a rise in scientific activity related to the concept
of thermoacoustics. Oscillations by heat have been of
great interest in many physical systems, astronomy,
fields of application, and so on.'> The applicability of
the map universality to the system will enable us to
effectively predict the qualitative behavior of nonlinear
thermoacoustic phenomena even if basic equations are
not known or difficult to be solved. This is very impor-
tant for the application of thermoacoustics.
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