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We discuss the superdiffuse motion of a random walk in a medium containing random velocity fields.
For a two-dimensional layered medium with y-dependent random velocities in the x direction u(y),
(x'(t))-t'", with 2v —', , and with strong sample-to-sample fluctuations. The probability distribution

of displacements, averaged over environments, takes a non-Gaussian scaling form at large time,
(P(x,t))-t '1 f(x/t'1 ), where f(u)-exp( —u ) for u)&1, with h -', . For an isotropic two-dimen-

sional medium with u (y) f(y) and u~(x)-f(x), we find v--', and b (1 —v) ' 3.

PACS numbers: 47.55.Mh, 02.50.+s, 05.40.+j, 47.25.-c

Stochastic transport in random media is often subdif-
fusive, where the mean-square displacement (x (t))
grows more slowly than linearly with time (see, e.g. ,

Refs. 1-3 for recent reviews). In this Letter, we discuss

a simple and general mechanism, based on the coupling
between diffusion and convection by spatially random,
but temporally static velocity fields, that leads to the
complementary situation of superdigusion, where

(x (t)) grows faster than linearly in time.
Superdiffusive transport has been treated previously in

a variety of contexts, such as chaotic systems, tur-

bulence, flow in fractal geometries, and Levy flights.
In the latter case, both subdiffusion and superdiffusion

can arise by choosing a sufficiently singular single-step

probability distribution. Here, we discuss a situation,
relevant to ground water transport in geological
aquifers, where superdiff'usion arises naturally, rather
than being built into microscopic-level transport laws.

Measurements of tracer dispersion in aquifers indicate
that the dispersivity systematically increases with dis-

tance between source and sink. A theoretical model in-

volving random velocity fields was constructed by
Matheron and de Marsily that yields a superdiffusive

spread of a tracer pulse. We extend this treatment in

several important respects to gain a deeper insight into
the role that random velocity fields play in super-

diffusion.
The basic phenomenon can be appreciated by consid-

ering a two-dimensional stratified porous medium con-

sisting of distinct parallel layers with different transport
properties in each layer [Fig. 1(a)I. When a pressure

drop is applied along the strata, the longitudinal fluid ve-

locity correspondingly varies from layer to layer. In a
center-of-mass frame of reference, therefore, the steady
velocities in the x direction are random zero mean func-

tions of the transverse coordinate y. Although the longi-
tudinal bias averaged over an infinite number of layers is
zero, the average over the finite number of layers that a
random walk visits is a fluctuating quantity which is a
decreasing function of the number of layers sampled.
This nonvanishing bias underlies superdifl'usive trans-
port

9- 1 2

Within a continuum description, the random-walk
motion is accounted for by the Langevin equations,

dx/dt u(y(t)), dy/dt ri(t),

in which a random walker undergoes pure diffusion

along y [(rl(t)rl(t')) 2Db(t —t'), where D is the trans-
verse diffusion coefficient] and is passively carried by the
quenched random convection field u(y) along x. Dif-
fusion noise in the x direction is subdominant and thus

neglected with respect to the random convection. For
simplicity, we take the convection field to be a Gaussian
white noise in space, (u„(y)u„(y')), ob'(y —y'), where

( . ), denotes an average over all velocity config-
urations of the medium.

To compute the moments of the longitudinal displace-
ment, note that for a given walk in a fixed environment,

(b)

'/4l

FIG. 1. (a) The random stratified medium and (b) the ran-

dom isotropic medium on the square lattice. The hopping rules

at a typical lattice site are indicated. In (a), the layers consist
of contiguous rows of the same orientation.
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the longitudinal position at time t can be written formal-

ly as

(2)x(t) = u(y(t'))dt'= A(y', t)u(y)dy,

where Ã(y, t) =fodt'b(y —y(t')) is the number of
times that the transverse Brownian motion y(t) visits

layer y after time t, having started at y =0. The super-
difl'usive behavior of this model can be understood by the
following heuristic estimate of x, ,(t) from Eq. (2). The
quantity A(y, t) is of the order of the elapsed time t di-

vided by the number of y layers encountered, i2Dt.

Further, the rms value of fdyu(y) is roughly cJ't
x (2Dt) 't, where the latter factor is the square root of
the typical range of the integral. Thus

x, ,(t)-&u, ),t-cr't'D 't4t't4,

a remarkable result which was apparently first derived in

Ref. 9 and which also can be derived in terms of a
power-law decay of the longitudinal velocity correlation
function. '

To justify and extend this intuitive argument to higher
moments of the longitudinal displacement, we write
these moments as

(4)
l

« x(t))„),=n!,dt!, dt2 „, dt„«u(y(t!)) u(y(t. ))) ), .

The double angular brackets indicate that one should first average over all transverse Brownian trajectories for a given
configuration of random velocities, and then average over all configurations. However, these two averages factorize and
can be performed in either order. Thus the velocity correlation function is

«u(y(t!)) u(y(t„))) ), dy! dy2 dy„&u(y!) u(y„)),

Xp(yn, tn)p(yn-! yn,
—tn ! t—n) ' p(y! y2, t I t2),

where

p(x, t) =(1/J4nDt )exp( —x2/4Dt)

is the Gaussian probability distribution for the transverse motion. The product of Gaussians in Eq. (5) is the probabili-
ty that a Brownian path visits the sequence of transverse positions {y(t;)) at times {t;f, having started at y 0. For the
continuous model defined by Eq. (1), &u(y!) u(y„)), is a sum of products of delta functions. Consequently, the
second moment is

i' l P l 1
+ + 4'«x(t) ) ), 2cr dt! ~ dt2 dyp(0, t!—t2)p(y, t2) = t

3ixD
(6)

Intriguingly, Eq. (6) does not fully characterize long-
time transport properties, as there are anomalously large
sample-to-sample fluctuations. ' The longitudinal dis-
placement, averaged over all walks in a axed environ-
ment, &x(t)), depends on the configuration, and does
not necessarily converge to zero at large times. Howev-
er, the average over all environments, «x(t)) )„does
equal zero in the center-of-mass reference frame. Clear-
ly &x(t)) has a distribution over environments which is
a Gaussian of variance «x(t)) )„which, for the con-
tinuous model of Eq. (1) is

(&x(t))'), -o„dy&X(y, t))'

=(J2 —1) t
3i+D

Thus both the configuration average of the mean-square
displacement, «x(t) ) —&x(t)) )„and the second mo-

ment «x(t) )„), vary as t t, but with diferent prefac
tors. This eff'ect has been pointed out previously, ' but
actual values of these prefactors are obtained here for
the first time.

An important consequence of these sample-specific
fluctuations is that the probability distribution for the

!
longitudinal displacement, P(x, t), cannot reach a con-
figuration-independent limiting form as a function of
x/t it4, in a fixed environment. For a single "typical" en-
vironment, the typical width of P(x, t) is presumably de-
scribed by «x(t) )„—&x(t)) )„while the configura-
tion-averaged distribution can be viewed as the "en-
velope" of the individual diffusion fronts for each envi-
ronment. The width of the latter is equal to

«x(t)')„), —«x(t)) ),'-«x(t)»', ,

and is expected to be larger than the typical width, as
found above.

In contrast to the individual P(x, t)'s for each environ-
rnent, the configuration average is expected to take a
well-defined scaling form in the large-time limit,

&P(x, t)&,—t ' f(x/t' ),
where it is understood that x and t are simultaneously
large with u=x/t finite (as is the case of any central-
limit theorem). For u» 1, the scaling function is expect-
ed to vary as

f(u) -exp(-cu')
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(with possible power-law prefactors). According to our
numerical and analytical arguments, the shape exponent
8 appears to take on the anomalous value 6 =

3 .
Our numerical approach to test the validity of Eq. (9),

and to find 8', is based on computing dimensionless mo-

ment ratios such as m2k (r) —= (x "(r))/(x (t)) and

(i) (x 2k(r))/(x 2(k —l)(r))(x 2(r))

5— ka

--'&slag s
4

0 0
0 ~
4

If (x (t))-(x (t)), the m2k and n2k will approach
constants at t ~ whose values depend on B. By at-
tempting to match our numerical estimates for m2k and

n2k to the moments that arise directly from Eq. (9), we

infer a value of b.
We have developed several independent calculational

approaches for these moments, all of which yield con-
sistent results. One method is to evaluate Eqs. (4) and

(5), thus yielding results which are exact for all times.
This calculation becomes progressively unwieldy at
higher order, and appears to be amenable only to numer-

ical integration. Up to sixth order, we find m4=3. 3
~ 0.03 and m6=19. 1 ~ 0.4, where the errors denote sta-
tistical uncertainties in numerical integration. These re-
sults indicate that f(u) is non-Gaussian (a Gaussian
gives m4=3, m6 15, etc. ), but are insullicient to give a
reliable estimate of 8.

A complementary numerical approach is based on us-

ing exact enumeration to find the probability distribu-
tion of longitudinal displacements exactly for a given en-

vironment, and then averaging over all environments in a
system of finite width w. For this computation, we em-

ployed the lattice model illustrated in Fig. 1(a). Each
horizontal line is randomly assigned a velocity, and at
each lattice site a random walk moves either in the +y
or —y direction with probability —, (thus fixing D), or
moves with the bias with probability 2 . We performed
this calculation for the 92205 distinct velocity con-
figurations (cyclic permutations and reflection symme-

try), out of the 2 states on a system of width w =23
with periodic transverse boundary conditions. This pro-
cedure provides the exact configurational-average proba-
bility distribution for an infinite system up to 22 time
steps.

By extrapolation of the resulting moments to t ~, a
consistent trend in the behavior of n2q as a function of k
can now be discerned (Fig. 2). To extrapolate the mo-

ment values n2k (t), we form the sequence

i (t) = IJt nik(t) —Jt —I n2k(t —I )]/lJt —Jt —1], '

which are the intercepts at I/vi =0 of the straight line
that passes through n2k(r) and n2k(r —1). This extrapo-
lation is then repeated on the successive levels of extra-
polant sequences. This approach yields a consistent pic-
ture in which the eAective value of 8' is a decreasing
function k. Our estimate of n4 suggests 6'=1.7, while

our estimate for ns is consistent with 8& 1.4.
The apparent change as a function of the order of the
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FIG. 2. Graphical estimates for the asymptotic behavior of
(a) n4 and (b) ng. Plotted are the values for nik(t) vs 1/Jt
(0), together with first (0), second (a), and third (&) extrapo-
lations based on plotting the intercepts at 1/Jt 0 of succes-
sive lower-order extrapolants. The arrows indicate the asymp-
totic values for 6-2 (Gaussian) and b= -', , while the square

brackets indicate our subjective uncertainty estimates for n21, .

moment suggests anomalous behavior of the tail of the
distribution function. Consider, therefore, the aver-

aged probability of finding a "stretched out" walk,

namely, (P(x-t, r)), Accordin. g to Eq. (9), this proba-
bility should vary as exp( —t i ). On the other hand, the
probability of a walk being stretched out can be bounded
from below by the probability of remaining transversely
confined to a region of unidirectional velocity bias. This
confining probability, averaged over all environments,
is isomorphic to the survival probability of a one-dimen-
sional random walk in the presence of randomly distri-
buted traps, ' and hence varies as exp( at ' ). By-
cornparing these two distributions, one concludes that

4

To further argue that 8= —', , we first exploit the fact
that the average in Eq. (4) can be first taken over envi-

ronrnents for a fixed trajectory, and then over all walks.
For a fixed trajectory, Eq. (2) expresses the longitudinal
displacement as a sum of independent random variables,
and it is thus clear that its distribution is a Gaussian,
exp[ —x /Q(t)], whose variance is proportional to Q(t)

Ã(y, i)-'. Wh, ile the complete distribution for Q(t)
is not readily calculable, it may be argued that the
large-Q tail of this distribution is also a Gaussian. Con-
sider first typical one-dimensional random walks which

visit each site Jt times within a range Jt. For such
walks, (Q(t))-(r/r 'i ) t '~ —t i . Now consider "con-
fined" walks which fill a region of extent ~-t with

a &
& . We assume that these ~alks spread uniformly

over the region t" so that Q(t) —(r/t') r' —t '. Con-
sequently, for confined walks, Q (r )/(Q (t) )—r

'i
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while the probability of such walks varies as
exp( —t/iv ) -exp(t ' '). Therefore the distribution
of Q(t) has the Gaussian form, P(g)-exp[[ Q—(t)/
(Q(t))] ] for Q»(Q(t)). Now averaging the Gaussian
displacement distribution exp[ —x /g (t) l over all
random-walk trajectories, i.e., over P(g), leads to an
averaged probability distribution of the form of Eq. (9),
but w&th 6= —', .

An isotropic-random-velocity-field model [Fig. 1(b)]
also exhibits superdiffusion. In two spatial dimensions, a
walk moves on a random "Manhattan" grid, in which
the directionality along any avenue or street is fixed
along its entire length, but whose orientation is random.
[This model can also be shown to be equivalent to a ran-
dom walk in a divergenceless random velocity field with
long-range correlations (u(0)u(x)), =

( x
~

'. ' ] For
the random Manhattan system, we generalize the argu-
ments of Eqs. (2) and (3) by formally decomposing the
isotropic motion into transverse and longitudinal com-
ponents. Assuming x, ,-t', and then by following the
steps that lead to Eq. (3), one finds that x, ,-t '

By isotropy, however, one must have v=1 —v/2, or
v= —, . Generalizing to arbitrary spatial dimension d
yields v 2/(d+1) for d (d, -3, v —,

' for d & d„and
with logarithmic corrections for d=d, . For the proba-
bility distribution of displacements, even modest simula-
tions in two dimensions indicate that Eq. (9) holds over a
substantial range, with v —', and 8 3, in accord with

the usual relation' between the shape and size exponent,
b-(1 —v)

In summary, superdiffusive transport arises from the
interplay between pure diffusion and convection by spa-
tially inhomogeneous, but correlated, velocity fields. For
the layered system, we find a size exponent v —,

'
in two

dimensions, with an anomalous large-distance tail in the
averaged probability distribution of displacements. For
an isotropic two-diinensional Manhattan system, the
probability distribution appears to exhibit conventional
scaling in which b (1 —v) ', and v=2/(d+1) for

d&3.
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