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Lattice Calculation of the Kaon-Matrix-Element 8 Parameter
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We have calculated the kaon-matrix-element 8 parameter (8&) using lattice QCD in the quenched
approximation with staggered fermions. We find the correct chiral behavior. Errors from all sources ex-
cept quenching are under control. At a lattice scale of 2 GeV our result is Bx 0.70+'0.01(statistical)
+0.03(systematic). This translates to a renormalization-group-invariant value Br. 0.9-1.0.

PACS numbers: 12.38.Gc, 11.30.Er, 12.15.Ji, 14.40.Aq
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where p indicates the scale at which the matrix element
is evaluated. It is conventional to use the parametriza-
tion

At(p) = ", fthm gBtc(p), — (3)

where the normalization is such that f~ =113 MeV, and
all the nonperturbative QCD effects are lumped into the
fudge factor Btc(tt). This choice is motivated by the
vacuum-saturation approximation in which Bq = 1, nom-
inally at a scale p ( 1 GeV such that a, (lt) —1. The
quantity appearing in Eq. (1) is the combination

B~=B~( )a.(u)

which does not depend on the scale p, as long as p is

It has now been 25 years since CP violation was first
observed in the KK system. A long-standing theoretical
challenge has been to deduce the consequences of this
measurement for the parameters of the standard model.
For this, one needs an accurate evaluation of a particular
matrix element in quantum chromodynamics (QCD).
We present here a calculation of this matrix element, us-

ing lattice QCD in the quenched approximation.
The CP-violating part of KK mixing is parametrized

by the quantity e. In the standard model e is related to
8, the CP-violating angle in the Kobayashi-Maskawa
(KM) mixing matrix, via

A

E' = (known factors) x sine|3 sining(m, )Btr,

where 813 is the usual b-to-u KM angle, and g(m, ) is a
known, monotonically increasing function of m, . ' The
hadronic matrix element is parametrized by B&. Since e
is measured, knowledge of B~ would give a strong con-
straint on the KM matrix and m, .

The matrix element needed to make the connection is

large enough that perturbation theory is reliable.
Because it is a function of nonperturbative QCD phys-

ics, it is nontrivial to calculate B~. Over the years vari-

ous approximate methods have been applied to this prob-
lem. Lowest-order chiral perturbation theory gives

Btr —0.33, ' QCD sum rules find values in the range
0.33-0.5, while the large-N, approximation yields
0.75(15). Clearly there is considerable uncertainty in

JL

Bsc

Lattice methods are well suited for a calculation of
Bz. Nevertheless, it has proven difficult to carry through

a reliable calculation. The first calculations were done

with Wilson fermions, ' which break the chiral symme-

try of the continuum theory quite severely. This leads to
extra systematic errors due to mixing with operators hav-

ing diA'erent chiral transformation properties. We

present here results of the first calculation using stag-
gered fermions, for which the dangerous operator mixing

is absent. Because of this, and other improvements, we

are able to considerably reduce the errors.
Like the previous computations, this calculation is

done using the quenched approximation, i.e., internal

fermion loops are not included. This is a very significant

truncation of the theory, the eff'ects of which are not well

understood. What is noteworthy about the present result

is that we are able to reduce all the systematic errors

from sources other than quenching to a low level.

Theoretical background. —A crucial check of lattice
calculations is to reproduce the expected chiral behavior.

If we vary the s and d quark masses, but keep both

small, we expect

2 2 2
mg mg m~ 4Bg =c]+c] 1n +c2 , +O(m ),

(4trf ) A , (4trf )'
(5)

where cl, cI, and c2 are constants to be determined (A
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TABLE I. Results for cl/cl.

Masses

m„=md =0
m„=md m,

m„=md 0

m„=md =m

Reference 10.

cI/cl
10
3
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can be absorbed into cq). The constraint due to chiral

symmetry is that A vanishes when m~ 0, so that Bg
tends to a constant. This constraint follows because the
operator in A, has a LL chiral structure. If one uses
Wilson fermions, then chiral symmetry is explicitly bro-
ken, and mixing with LR operators is allowed. In this
case Af can tend to a nonzero value when mg 0. One
has to try to subtract the LR component, which intro-
duces extra systematic errors. With staggered fermions,
enough chiral symmetry is maintained on the lattice to
forbid mixing with LR operators, so that the lattice ma-
trix element should have the correct chiral behavior
without subtraction. ' This result holds both in the
quenched approximation and in the full theory.

Because of the finite volume of the lattice, we can only
simulate quarks with masses down to about m, /3. Thus
our lattice "kaon" is composed of two almost degenerate
quarks whose masses add up to m„ in contrast to the
physical kaon in which the d quark is almost massless.
The leading coefficient c~ is independent of the quark
masses, and thus should be the same for both lattice and

physical kaons. The nonleading coefficients c~ and c2
can, however, depend on the choice of quark masses. We
can estimate this dependence by varying the lattice s and
d masses within the range available to us.

In general, we do not expect the quenched approxima-
tion to yield the correct coeScients in Eq. (5). The only
exception concerns the coefficient of the chiral logarithm,
c~. This term is due to loops of pions, kaon, and g's, and
is related by chiral symmetry to c~. The ratio c~/c~ is

given in Table I for the different theories of interest.
The table shows explicitly that c& depends on the quark
masses, although the dependence is weak. More impor-
tantly, the quenched approximation gives results for the
chiral logarithms which are very close to those in the full

theory. This is not true for other quantities, for example

f», for which the quenched calculation lacks the

mz lnm~ terms present in the continuum. ' It is only be-
cause the f» dependence cancels in the ratio 8» that one
gets the correct chiral logarithms.

The fact that the quenched approximation contains al-
most the correct chiral logarithms is important for two
reasons. First, the chiral logarithms can make an impor-
tant contribution to Bg. For example, if one takes the
reasonable value A-0.8 GeV, the chiral logarithm is
-35% of the leading term. Thus we might expect a

quenched calculation of B~ to be more reliable than that
of, for example, f»

The second reason is qualitative. Loops of light
mesons are present in all calculations using full QCD,
e.g. , in the pion cloud surrounding the nucleon. For
small pion masses, the loops involve propagation over

long distances, and will be affected by the finite size of
the lattice. Numerical calculations in full QCD will

have to understand such effects, and Bg offers a first op-

portunity to study them.
The finite-volume dependence of Bg can be predicted

because the ratio c~'/c~ is known. The calculation uses

the methods of Ref. 11. The finite-volume shifts turn out
to be small, less than 0.5% for all points in our data set.
We have also calculated other matrix elements in which

the predicted finite-volume dependence is larger. ' In
these cases our numerical results are consistent with the
predictions, which gives us confidence in the prediction
for Bg.

The arguments leading to Eq. (5) rely on the stag-
gered-fermion flavor symmetry. This symmetry is par-
tially broken at finite lattice spacing, leading to correc-
tions to this equation. We can test for such corrections

by comparing results at different lattice spacings.
The final issue is operator mixing. With staggered fer-

mions, mixing with LR operators does not occur but one
must still account for the perturbative renormalization of
the lattice operators. Following the work of Daniel and

Sheard, ' we have completed this calculation. ' We find

that the corrections to Bg are less than a percent. There
is, however, reason not to trust this result. Calculations
of other quantities suggest that at g-l, the one-loop
perturbative estimates of corrections may be off by as
much as a factor of 2. Thus we have decided to omit the
perturbative corrections, and instead add 2% to our esti-
mate of the systematic error. In this way we do not ob-
scure our lattice results by choosing a particular im-

plementation of the perturbative corrections.
Results. —Details of our computational methods are

given in Refs. 15 and 16. The parameters of our ensem-
ble of lattices and propagators are listed in Table II.
The most time-consuming and reliable results are those
obtained on the 24 x40 lattices.

We show in Fig. 1 the results for 8» at p=6.0 and

6.2. To convert the kaon masses to physical units we use
the values for a ' given in Table II. There is at least a
10% uncertainty in the estimate of a, which ultimate-

ly feeds into a small (1.5%) systematic error in 8». Sta-
tistical errors have been estimated using the jack-knife
method. To obtain our estimate of the physically
relevant B parameter, we fit the data with a linear func-
tion of mz and extract the value at the physical value of
m». For p=6.0 this involves interpolation, which we

consider very reliable. For P=6.2, the small physical
size of the lattice limits us to larger masses, and we must

extrapolate. This increases the errors somewhat. Our
results for B& at the physical kaon mass are collected in
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TABLE II. Lattice parameters and results for B~. 0.80

a
P (OeV) mqa Size Sample

5.7 1.0
6.0 2.0

0.005, 0.01,0.015 16 x 32
0.03,0.02, 0.01 16 x 40

6.2

30
17
14

All

24 x40 15
2.5 0.03,0.02, 0.01,0.007 18'x 42 27

0.98 + 0.02
0.71+ 0.02
0.69+ 0.03
0.70 ~ 0.02
0.70+ 0.01
0.69+ 0.03

0.75

Table II.
The most important feature of Fig. 1 is that Bg ap-

pears to have a convergent limit as mg 0. Our results
are thus consistent with the expected chiral behavior.
Furthermore, the sum of the higher-order terms [those
proportional to cI and c2 in Eq. (5)] is small compared
to the leading term at the physical kaon mass. The
smooth extrapolation to m~ =0 is confirmed by results
from the lattices at p 5.7. These are the largest in

physical units (-3.2 fm across) thus allowing the use of
the smallest kaon masses. Although the actual value of
the amplitude is larger at p 5.7 (see Table II), we find

no indication that the behavior of the amplitude changes
at quark masses smaller than those shown in Fig. 1.

We have examined what happens when the s and d
quarks are not degenerated by comparing, at p=6.0, re-

sults for mda 0.01, m, a =0.03 with those for m, a
=mda =0.02. We find that the values of Bg agree
within an error which is considerably smaller than the
error in either measurement. If we extrapolate to the

physical situation of an almost massless d quark the re-

sult for 8& will change by less than our statistical error,
—1%.

At p =6.0 we use lattices of two different sizes to test
for finite-size eA'ects. Figure 1 shows no evidence for
such eA'ects, so they must be smaller than the statistical
errors. This is completely in accord with the theoretical
expectations discussed above.

We have also checked that our statistical errors are re-

liable: We use two completely independent samples on

the 16 lattices, and find that the results agree within

their errors, as shown in Table II.
Since we have data at several values of p, we can say

something about the approach to the continuum limit.
We expect that Bg should have a mild dependence on a.
Using Eq. (4) with the bare lattice couplings, we expect
B~ to be —1% smaller at p=6.2 than at p=6.0. Our
results are consistent with this expectation. The value of
B~ at p=5.7 should be —1% larger than at p=6.0,
while the change is in fact much larger. This implies
that perturbation theory has broken down, probably due
to large O(a) corrections. Since we need perturbation
theory to make contact with the real world via B~, re-
sults for P & 6.0 are not trustworthy.

Conclusion. —We have a reliable quenched result for

0.70 16 X40

o 24 X40

18 X42
0.65

0
I

0.4 0

mK (Gev )

I

0.2
I

o.e

Bg for p 6.0 and p 6.2 as a function of mx in

physical units. The abscissas of the p 6.0 points have been
symmetrically displaced, and the error on the p 6.2 has been
included on only one point. The errors on the other points are
similar.

The systematic error reflects the eAects of the lattice
scale, finite volume, and perturbation theory. We stress
that the systematic error due to our use of the quenched
approximation is not known, and may be large.

Results with Wilson fermions are consistent with our
value, though the former have a larger uncertainty. We
quote the values for Bg(2 GeV) at p=6. Using a
10 x 20&40 lattice, the European Lattice Collaboration
reports a value 8~ =0.81 ~ 0.16, where the error is only
statistical. More recently, Bernard and Soni have used

the same ensemble of quenched lattices employed in the
present calculation, and obtain Bg =0.83 ~0.11 ~0.11
on the 16 lattice, and Bg=0.66~0.08+0.04 on the
24 lattice. ' The first error is statistical, while the
second is their estimate of the extra systematic error
coming from the subtraction needed when using Wilson
fermions. Systematic errors due to finite volume and lat-
tice spacing are not included in these estimates. The fact
that the Wilson and staggered results agree within their
respective errors is an important check that the lattice
systematics are not too severe.

To extract a physical number, and to compare with re-
sults from other approximation schemes, we use Eq. (4)
to give a value for Bg. Our final result is B~ =0.9-1.0,
where the uncertainty comes from the choice of a, (p).

Bg. The errors due to finite computer power —statistical
and finite-volume errors —are under control, and are now

comparable with errors from other sources, e.g. , pertur-
bation theory. For our final quenched answer we quote

Bz(2 GeV) =0.70 ~ 0.01(statistical) ~ 0.03(systematic) .
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That the final number is close to the original vacuum-

saturation value is quite ironic, especially considering
that our calculation diA'ers strongly from vacuum satura-
tion at every intermediate step.
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