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Ising Spin Glass in a Transverse Field: Replica-Symmetry-Breaking Solution
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The replica-symmetry-breaking (RSB) solution of the infinite-range Ising spin glass in the presence of
a transverse field is obtained. The quenched free energy and the phase boundary of the glass transition
temperature versus the transverse field are calculated at first-step RSB without using the static approxi-
mation. We demonstrate that replica symmetry (RS) has to be broken in the spin-glass phase by com-

paring the free energies of the RSB and RS solutions. No evidence is found to support an intermediate
spin-glass phase with replica symmetry.
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There has been a growing interest in the theory of
quantum spin glasses in recent years. ' In particular,
there is much interest in the Ising spin glass with a trans-
verse field, which is a model for the proton glasses.
An example' is the mixed hydrogen-bonded ferroelec-
tric Rbi-„(NH4) H2PO4 system in which a spin-glass
phase has been observed. The system is a random mix-
ture of ferroelectric and antiferroelectric materials and
can be modeled by the Ising spin glass in a transverse
field. The tunneling effect of the proton between the two
minima (the two Ising spin states) of the hydrogen bond
can be represented by the transverse field. "' This
model is particularly suitable to understand the quantum
nature of spin glasses because of the fact that at zero
transverse field the model reduces to the purely classical
Ising spin glass. The simplest case is the infinite-range
model in which any two spin pairs are interacting. Clas-
sically (no transverse field), this is the Sherrington-Kirk-
patrick (SK) model' which is well described by Parisi's
replica-symmetry-breaking (RSB) solution. ' The novel
features like coexistence of many almost-degenerate
thermodynamic states separated by huge free-energy
barriers and a wide spectrum of dynamical time scales
are contained in this solution. Thus it is interesting to
understand whether such a phase-space picture remains
true if quantum effects are included; will the quantum
fluctuations be strong enough to cause tunneling between
these free-energy barriers and destroy the many-state

picture?
There has been some controversy about the nature of

the spin-glass phase of the SK model with a transverse
field. Thirumalai, Li, and Kirkpatrick, using the static
approximation, claimed that there is a small region in
the spin-glass phase where a replica-symmetric solution
is stable, unlike the classical SK model with no trans-
verse field. On the other hand, Buttner and Usadel7
showed recently that a full treatment, which does not
utilize the static approximation, predicts that
replica-symmetric solution is always unstable in the
whole spin-glass phase. Furthermore, contracting both
of the above, Yokota, using a pair approximation,
showed that the spin-glass transition temperature in-
creases linearly with the transverse field I for small I.
Finally, Ray, Chakrabarti, and Chakrabarti performed
some Monte Carlo simulations which tend to support the
stability of the replica-symmetric solution in the spin-
glass phase and Yokota's analytic result. Recently,
Goldschmidt' obtained a solution to the infinite-ranged
spin-glass model in a transverse field with p-spin interac-
tions in the limit of large p and showed that in that case
RSB is present in the entire spin-glass phase.

In order to clarify part of the above issues, we tackle
the model analytically and obtain the first-step RSB
solution. In this Letter, we report results for the
quenched free energy and the phase diagram. Our result
for the phase diagram disagrees with the results of Yoko-
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where the spins i and j are connected by the random-
coupling bond J;j which is Gaussian distributed with
zero mean and variance J /N. The o's are the Pauli spin
matrices and I" is the transverse field. The problem can
be mapped into a classical spin system plus an extra
"Trotter" dimension using the Trotter-Suzuki formu-
la' ' with the effective classical Hamiltonian for the
Mth approximant given by

M N

+c;ff Z Z Jij SikSjkM k-i i&j
M N——Z Z S"Sk+i

P k~l i~l

where we define

MNC (2)

ta and Ray et al.
The Hamiltonian for N interacting spins in a trans-

verse field I reads

IV Ne- —g J,,a;a;+rgb, ",

ed by a numerical investigation of the saddle-point
equations of the Q's. Also, it will be shown later that
this is a self-consistent assumption. It has been shown,
without assuming Rkk to be static, that the replica-
symmetric (RS) solution is unstable in the whole spin-
glass phase. Thus the RSB solution must be considered
in order to describe the spin-glass phase correctly. We
use Parisi's scheme of RSB as in the case of the SK
model. Rkk has a single replica index and is replica
symmetric. For Q", we use first-step RSB with a
parametrized as a (K, y), where K 1,2, . . . , n/m is
the box label and y 1,2, . . . , m is the label inside a
box. The values of Q" are classified according to the
number of replica indices in the same box. The possible
values are Q2 and Qii. After some algebra, we obtain
the expression for f,

1
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Q2
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(3) Dz ln Dy ZP, (7)

S;k ~ 1 is the classical Ising spin on the lattice (i,k),
where k 1,2, . . . ,M is a label for the Trotter direction
and satisfies the periodic boundary condition. Ultimately
the limit M ~ must be taken. The replica trick is
then used to calculate the quenched free energy per site.
After some algebra, we obtain

2J2pf- lim, Z Z(ggg')2+2 Z(Rgk)'
0 4nM a&a' kk' a k &k'

R2J2+" ——ln TreG,
4M n

where a 1,2, . . . , n is the replica index and

(4)
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Tre~
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Because of the translational invariance in the Trotter
direction, the order parameters depend on

~
k —k'~. We

will assume the Q's to be static, i.e., independent of
~
k —k'(, but not the R's. This assumption can be un-

derstood from the nature of g", which is the order pa-
rameter in the spin-glass phase, and was further support-
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The Q's and R's satisfy the saddle-point equations

TrSgSgeo
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and the periodic boundary condition is obeyed. Qi i, Q2,
and R~k k

~

satisfy the saddle-point equations that ex-
tremize f,

fDy &rk)HZH

fDyZH

fDy (rk)HZH
Dz 9

fDyZm

fDy &rkrk)HZH
R[k-k ]

Dz k~k',
fDy ZH

where ( )H ——Tr( e )/ZH. If one assumes Rkk to
be static, then the M ~ limit can be taken analytical-
ly and we obtain the free-energy density at first-step
RSB,

p2J2
pf - [m(Q2 —Qi'i) —Q2+R']
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where p—=w jR —Q2+z jg»+y jg2 —Qii. However,

where Dz=—(dz/v2x)exp( —z /2) and ZH ——Tre with

H being the new Hamiltonian of M Ising spins r,
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FIG. 1. Phase diagram of the Ising spin glass in a transverse
field at first-step RSB.

0.0
0.25 0.5 0.75 1.25

we now show that such an assumption is not self-con-
sistent. The right-hand sides of the equations for Q~~

and Q2 in (9) are indeed independent of k since (rl, )H is
k independent. On the other hand, (rkrl, )H on the
right-hand size of Rkk depends on

~
k —k'

~
. Even if one

assumes Rl, k to be static in Eq. (8), (imari, )H is still
dependent on

~
k —k'

~
unless 8 0, implying that the

static assumption on Rki, is not self-consistent. The Q's,
R's, and m are then solved from Eqs. (9) together with
the equation tlf/rim 0, which is obtained from extrem-
izing f. The RS ease can be recovered by setting

Q~~ Q2. In practice, one needs to compute the parti-
tion function ZH and the averages ( )H. This can be
done by direct spin summation if M is not too large. A
Monte Carlo method ean also be used to calculate the
averages and the partition function. ' In this paper, we
use direct spin summation and obtain results for finite
values of M and extrapolate to M ~ using the I/M
law. "

For a given transverse field I, we obtain the values of
the order parameters Q~ ~

and Q2 at different tempera-
tures for various values of M (M~8). Our results
agree very well with the 1/M law and the values at
M ~ are obtained. Above the glass transition temper-
ature Q~ ~ Q2 0. As the temperature is increased, the
critical temperature at which Q2 and Q~~ fall to zero is
located. The phase diagram of the glass transition tem-
perature versus I is then produced. As shown in Fig. I,
the phase diagram is in qualitative agreement with the
one obtained with the RS solution in the high-tem-
perature phase without using the static approximation.
The critical field above which no glass transition occurs
is about 1.6J. Our result disagrees with the prediction
by Yokota and recent Monte Carlo simulation results
which indicate the glass transition temperature increases
with I for small I . Pair approximation has been used in
Yokota's analysis, which we anticipate to be the reason

FIG. 2. Q2, Q ~ ~, and m vs I at T/ J 0.6.
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FIG. 3. Free-energy density vs the transverse field at T/J
0.1. First-step RSB and replica-symmetric solutions are

shown.

for the discrepancy. For the Monte Carlo work, the size
of the systems simulated is small (N 32) and the error
bars are too large to allow any firm conclusion. We have
also performed Monte Carlo simulations, which will be
reported elsewhere, '9 for larger system sizes, and the
phase boundary obtained is in agreement with Fig. l.

To demonstrate that the RSB solution is the correct
solution in the spin-glass phase, we display in Fig. 2 the
variation of Q2 and Q~~ as a function of I at T/J 0.6.
In the spin-glass phase (I /I (1.2), Q2 & Q~~ & 0 and
RS is indeed broken. Figure 3 shows the free energy as
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To conclude, we obtained the solution of the infinite-
range Ising spin glass in a transverse field with first-step
RSB. We find that, though suppressed by quantum
effect, the spin-glass phase still exists and replica symme-
try is broken. The phase space is characterized by many
almost-degenerate thermodynamic states, qualitatively
similar to the classical case.

This work was supported by National Science Founda-
tion under Grant No. DMR-8709704.
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FIG. 4. Rqq vs )k —k'~. Solid line: T/J 0.4, I/J 1.0,
spin-glass phase. Dashed line: T/J 0.4, I /J 1.6, paramag-
netic phase.

a function of I at T/J O. l for the RS and RSB solu-
tions. The RSB solution always has a higher free energy
than the RS solution in the spin-glass phase, indicating
that RS is broken. (In the n 0 limit in the replica
trick, one maximizes the free energy rather than minim-
izing it.) No indication is found to support an intermedi-
ate phase with spin-glass ordering and RS, in agree-
ment with the results of Ref. 7. Finally, to illustrate that
the static approximation is indeed not correct, we show
in Fig. 4 Rkk as a function of

~
k —k'~ in the spin-glass

and paramagnetic phases. In both phases, Rl, k is a de-
creasing function of

~
k —k'~.

The present method can be extended to construct a
higher-step RSB solution for this model. We expect the
changes in the free energy to be relatively small as in the
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