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Scaling Approach to Pinning: Charge-Density Waves and Giant Flux Creep in Superconductors
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A general scaling approach to pinning and response in weakly disordered systems is developed that
considers pinning at arbitrary high energy barriers. These are a consequence of a disordered T=O
renormalization-group fixed point which characterizes the condensed phase. Application of flux creep in

superconductors yields a creep velocity v(j) tLexp( —Cj "), where tt is related to the roughness ex-
ponents (' of the flux-line lattice. We argue that g O(log) and p (d —2)/2 as for charge-density
waves.

PACS numbers: 71.45.Lr, 74.60.Ge, 74.60.JI, 75.50.Lk

The most prominent feature of condensed phases in

solids is the rigidity of the order emerging below the con-
densation temperature T, . This rigidity can be de-
creased by the formation of topological defects of dimen-
sionality D. Examples are domain walls (DW's) (D
=d —1), flux lines (FL's) and dislocations (D 1), or
hedgehog configurations (D 0). If there are competing
interactions, defects may form lattices of their own as in

the Shubnikov phase of type-II superconductors or in in-
commensurate magnetic structures. Other examples are
mass-, spin-, or charge-density waves (CDW's) in the
plane-wave limit. All these objects will collectively be
referred to as "defect structures" (DS). The support of
the DS is in the latter case the whole d-dimensional
space (D =d).

For pure crystals the response to an external force p,„
which couples to the order parameter consists in the
motion of the DS which transmits a local perturbation
through the crystal. The defect motion can be slowed
down by pinning at randomly distributed impurities. In
this paper we present a very general scaling approach to
pinning and response in weakly disordered systems. In
the first part we present the outline of the theory. The
central quantity which describes the DS in a disordered
medium is its roughness: For D ~ 4 and on sufficiently
large length scales, L&&L&~n; ', fluctuation in

the impurity density n; adds up to overcome the elastic
stiffness of DS. This leads to large-scale distortions
u-L~ of the DS, ()0. Different metastable config-
urations are separated by energy barriers of increasing
height, Eg-L~. Pinning forces are related to the slopes
of these barriers. On small scales L&&L&, there is no
pinning and the response to p,„can be expressed by a
generalized susceptibility j. In previous approaches to
collective pinning only a sing1e energy barrier T&

=Ett(L~) has been considered, which leads to correct
results if T =0 and p,„ is close to the depinning thresh-
old p~. However, at finite temperatures this barrier can
be jumped over and higher barriers become relevant.
For T« T~ this leads to a weak logarithmic time (or fre-
quency) dependence of the pinning force and the suscep-

tibility, with exponents related to g and tlt. A small driv-
ing force generates a creep motion of the DS whose ve-
locity depends nonanalytically on p,„. For D~2 and
Tt, & T & T, thermal fluctuations are already important
on short time scales where p& and g are renormalized by
powers of T/Tt, .

In the second part of this paper the results are applied
to CDW's and type-II superconductors. In particular,
we calculate the flux-creep velocity and the ac resistance
of a FL lattice. The roughness of the lattice grows only
logarithmically with the scale L, in strong contrast to
previous results. 'o The application of our approach to
single DW's or FL's will be published elsewhere. "

To be specific, we consider a DS whose deformations
are described by an n-component distortion field u(x).
u(x) depends on the coordinates of D-dimensional sub-
space of R, D(d. The Hamiltonian of the system is
assumed to be

w(Ln) = g&[L(n)/Lt], 0 (g& 1, (2)

with L(n) =L »Lit and a positive roughness exponent g

P= d x[ —,'1(V u) +V(x, u) —p„u], (1)

where I denotes an elastic stiffness constant and V(x, u)
includes the interaction with the disorder and is assumed
to result from randomly distributed impurities of energy
U. Equation (1) describes DW's and their lattices, as
well as CDW's, if n 1 and FL's and their lattices if
n d —1. For CDW's u denotes a phase. In the follow-
ing we will assume that u(x) is a single-valued function
of x; i.e., we neglect overhangs of DW's and FL's, and,
probably more important, vortices in CDW's and dislo-
cations in FL lattices, for the sake of simplicity. We
come back to this point at the end of the paper.

First we consider the case where p,„=0. The cen-
tral quantity is the roughness w(Ln) =([u(x+Ln)
—u(x)] )'I . Here () denotes the average over thermal
fluctuations and the randomness. There is a parameter
range where the system has a rough phase such that for
large L
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Ett = 2 dx V(x, u, ) = I u L
~i

With 0«u, (L) «AL we get D —2«y«D. In the
long-time limit, where we are close to equilibrium, u, (L)
= w(L) and hence y g and B= T, which we will use
in the following. Next we consider the conclusions which
follow from the scaling Ansatz for Ett (L).

The slope of the barriers Ett (L)/w (L) =p (L)L
determines a pinning force density p(L) =I (~Ltt »L»

Since (& 1, the largest pinning force density p results
from the smallest scale, L=Lt, on which barriers exist.
On smaller scales a weak external force p,„«p leads to
distortion u (p,„)=j(L)p, „which follows from I"u L
= up, „, i.e., g(L) I 'I, '.

At finite temperatures energy barriers Ett(L) are
jumPed over in a time t(L)=toexP[Ee(L)/T]. tv is a
microscopic attempt frequency. Thus, in a time t, bar-
riers on scales L &L, =L [i1 +(T /T*)ln(t /t )0]'t» are
ineffective for pinning. Using L, in p(L) and Z(L) we

get a time- (or frequency-) dependent pinning force den-

sity

p(t) =p*[1+(T/T')1 (t/nt )]'»0"t»,
p* =I g /Limni, and susceptibility

g(tv) =j [1+(T/T )1n(1/tvtv))'t

(4)

(5)

where g*=(&/p*. For p,„«p*, the DS is free on

(for () 1 the model is no longer well defined on large
scales). (~ and Li set the scale for w and L I. n particu-
lar, Lii plays the role of a correlation length in the case of
CDW's or for FL or DW lattices, ' respectively.
Throughout this paper we will assume only the case of
weak disorder such that Li»g&. Since the roughness
results from a competition between the first two terms in

(1), the spread AE of energies of the rough DS in a
volume L is ~=I L w2(L) or'

LIE(L) —T (L/Lii), T* I g Li

g 2(+D —2.

The low-frequency dynamics of the system is governed

by the free energy barriers Ett between different meta-
stable states which are close in energy to the ground
state. We make the natural conjecture that typical bar-
riers scale as Ett(L) =B(L/Li) ~. As long as the distri-
bution of Ett(L) has no long power-law tail we can ob-
tain the correct long-time behavior of our system by con-
sidering only typical barriers. ' Let us consider two
neighboring local minima, separated by an unstable
maximum on the scale L. All three states are saddle
points u, (x) which fulfill the Euler equation correspond-
ing to (I). With u, (x) the absolute values of the elastic
and the random potential term in (1) scale in the same
way, but with a plus and minus sign of the random term
in typical maxima and minima, respectively. Hence

scales L & L~ =Li(p /p, „)'t » [compare p(L)]. Pin-
ning on smaller scales can be overcome only by thermal
jumping, which leads to a creep of the DS with a velocity
v = w(Lp)/t(Lp), i.e.,

v(p, „)= exp
to

g/(2- g)
.

Pex

and p,„«p*. We now have to specify Li, g~, (, and g.
In the trivial case of purely thermal roughness w(L)

wT(L—), where V=—0, g= gT (—2 —D)/2, g 0, and Li
=LT (I g /T) 't, which implies T T, p = T/
(ALT, and a Curie-like susceptibility g =LT(&/T. It is
obvious to choose as gi the relevant correlation length of
the problem. In most of the cases this is the widths g of
the FL's or DW's, which diverge at the condensation
temperature T,. ' Then I ( = T, and Lia:( since I
scales like a free-energy density I -(

Next we consider the case of quenched random im
purities at very low temperature T«T&. In order to
find L i —=L& we consider a deformation u = g& = g on the
scale L =L~. The elastic energy scales like I g L&
which has to be compared with the energy gain—v[N(L~)]'t2 from the fluctuation of the impurity
number N(L~) n;( L~ in the volume L&. Thus, the
DS is rough for D «4 and L& ((I"( /6, ) tt, where

v(n;g )'t and we assume N(L&)»1. Equations
(3)-(5) give T =T I g L, p =p I /L
etc. T~ corresponds to the height of the smallest energy
barriers in the system and characterizes the disordered
system in a way similar to the way the Debye tempera-
ture characterizes a harmonic solid. In particular, the
specific heat c,, at low T behaves as c,, = T/T&. '" Close
to T„L&~g and T~~g, where 8~0 is the "violation
of hyperscaling" exponent describing the irrelevance of
temperature, e.g., in random-field systems. ' The ex-
ponent g=(& for quenched randomness is only known in

special cases. (& depends on D, n, and on the character
of the impurities, i.e., whether they are of random-bond
(RB) or random-field (RF) type. In a simple (Flory) ar-
gument one compares the scaling behavior of the elastic
and the random energy on the same scale L."' Clearly
the exponent gp obtained in this way is, in general, not
exact since V(x, u) gets renormalized from disorder fiuc-
tuations on smaller scales.

The results for Lii, T*, p*, etc. , are so far valid for
T« T»,. In the opposite case T» T~, w(L) is given by
wT(L) for (L/LT) ') (L/L&) ' (there is no renormal-
ization of v on these scales), i.e., for L &Li =L~(T/
T~)' ~, p=2((F —(T). For P) 0 and L &Li, w(L) has
the form (2) with (~ wT(Li). To get results which in-
terpolate between low and high T we introduce the fac-
tor e(T) = (I+T/T&)' ~. Then from (2) and (3) we
get

L. -L,e, g =g,e', T'-T,e',
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—2
which give p* =p~8 ' and g =g~8 . Thus, the pin-

ning pressure is diminished and the susceptibility is

enhanced considerably by thermal fluctuations, in partic-
ular, for small p. The amplitudes of w(L) are given here
in the general case for the first time and decrease with

temperature as T ' for T & T&. We note that for
D & 2, where there is no thermal roughness, & =2' and

T& has to be replaced by I ( = T, in the definition of 8.
P(D, ) =0 defines a critical dimensionality D, . For p & 0
weak disorder is perturbatively irrelevant. This opens
the possibility for a depinning transition at T=T~ be-
tween a low- and a high-T phase with (=(& ( & gT) and

(=(T, respectively. If g~ vanishes, the transition tem-
perature goes to zero. Equations (3)-(7) are the basic
results of our paper.

In the following we consider two examples.
(i) Charge density-wa~~es n=l and D=d.—Here u is

a phase, thus ( =tr. I =vF is the Fermi velocity and
V(x, u) =~ cos[u —a(x)] with a(x) a random phase.
L&= (vF/vn t ) t" is the correlation length of the
CDW, p& = vF/L&, and j~cx: vF 'L&, in agreement with

previous results. A prediction for w(L) at T=0 can be
obtained from a Flory-type argument: In the first step
we define a trial Hamiltonian Pp by replacing V(x, u) in

(1) by —,
' r(x)u . From a variational treatment for the

free energy follows

—( 1/2)(u 2)
r(x) =(tl V(x, u)/|Iu )p= —v[cosa(x)le

()p denotes the thermal average with Sp. For T 0,
u(x) takes the ground-state uo(x), i.e. , (u (x))p
= uo (x). On the scale L, uo (x) = u(L), and hence the
potential energy scales as hL e " . Comparison
with the elastic energy and subsequent summation over
contribution on scales L' ~ L yields w(L) ee (4 —d)
xln(L/L&) for d &4, with L& from (7). Thus, g&

=O(log), g~=p=d —2, and the CDW is frozen in for
d &2. A small external field p,„~E leads to a creep
motion according to (6). For d=2 where thermal and
disorder fluctuations predict a logarithmic roughness
there is a depinning transition for the CDW at a transi-
tion temperature T, =4trt which is independent of A. "
For d & 2, /& =0 & gT and hence there is only the high-T
phase with small T& for small disorder. The CDW is

weakly pinned. '

(ii) FL lattices (FLL) in type Il supercond-uctors
In this case our results apply if we choose I =py&, with
the anisotropy constant )z =(K/p)'t, where K and ti
are the tilt and shear modulus of the FLL. The bulk
modulus is assumed to be infinite for simplicity. L(n)
=L(n~+ y~n, )'t-', the definition of 5 obtains an addi-
tional factor yj and g~ = g. " From (2)-(7) we get, in

d=3, L~= p K' g /n, v, T~= p K( /v 'n„and the-
critical current j~(T=0) = p(/L&B in agreement with

conventional approaches. ' 8 denotes the magnetic field
and p„=jB. It is important to consider the discreteness
of the FLL if one treats the interaction with the random-

V(x, ll) =—Vp(x) g cos [u (x) x ] + ' ' '2 -- " 2z
l'

where we used the transformation y+u(y) =x, x=(x,
z), and assumed a square lattice for simplicity. Thus,
the FLL is in the universality class of CDW's giving only
a logarithmic roughness g&=0 for d &4, in contrast to
earlier results. ' Hence, the FLL undergoes a depin-

ning transition in d=2, but not for d & 2 where it
forms a vortex glass with a T=O fixed point, g&=d —2
~ p 16,2l

According to (4), the critical current is reduced to

j,(to) j~[l+(T/T~)ln(1/ ttp)p]
't" at finite tempera-

tures, where p g/(2 —()-(d —2)/2. Note thatj, (1/t)
-BM(t) describes the decay of a metastable current (or
magnetization). From (6) we get for the nonlinear
dc resistivity to a current j« j&,

exp
() v()
Pa ~'o

f l p
Tg J
T J

p&= Bvp/j~, i.e., the linear dc resistivity vanishes. For
an ac current (5) gives for the linear resistivity p~(cp)
cx: p~ ttpp[( T/T)ln(1/tptp)] tz, totp & exp( —T,/T).

Since in a time t the FLL reaches equilibrium only on
scales L, [see below (3)], one has to expect memory
efl'ects at t =2t~, if one starts from a nonequilibrium
state of higher FL density and increases the field after a
waiting time t].

The present scaling approach to pinning extends and
unifies previous theories which are included as limiting
cases. Its most important ingredient, the existence of en-

ergy barriers of arbitrary height, is a consequence of the
existence of a disordered T=O renormalization-group
fixed point which describes the condensed phase. Defects
like vortices or dislocations, which have been neglected
here, occur at suSciently large length scales even at low
T and for weak disorder. ' ' As long as they occur as
bound pairs or closed loops, our conclusions are changed
only quantitatively, e.g. , by reducing the stiflness I . De-
fect dissociation, however, may lead to new phases with

finite barriers only.
I thank F. H. Brandt, G. Eilenberger, M. Feigel'man,

K. Fischer, K. Kehr, W. Renz, and H. Ullmaier for use-

ness Q„Jdz Vp[y„"+u„(z),z]. Here the sum is over all
FL's with the reference position y„. We go over to the
continuum using

g f(n) = dy f(y)+2 g dy cos(2ttky) f(y) .
n

The first term on the right-hand side is the continuum
approximation which gives no contribution since Vp[y
+u(y)] becomes independent of u on large scales. Tak-
ing only the k 1 part in the second term we get for FL's
of distance l
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