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Normal-State Properties of the Uniform Resonating-Valence-Bond State
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%'e study a version of the uniform resonating-valence-bond state in which fermions and spinless bo-
sons are coupled by a gauge field. %e show that above the Bose-Einstein temperature, the boson inverse
lifetime due to scattering by the gauge field is of order kT, which suppresses the condensation tempera-
ture and leads to a linear T resistivity. The Hall number is proportional to the hole density and ternpera-
ture dependent. The single-particle spectral weight exhibits a continuum plus a broadened peak. The
"Fermi-surface" area satisfies Luttinger's theorem. Comparison with the anomalous normal-state prop-
erties of oxide superconductors is made.

PACS numbers: 74.65.+n, 71.10.+x, 75.10.Jm

In the three years since the discovery of the copper-
oxide superconductors, ' a large body of experiments has
been accumulated which begins to paint a rather clear
picture of what the solution of this puzzle has to look
like. The normal state exhibits a number of anomalous
properties which suggest that it is not an ordinary Fermi
liquid. The resistivity is linear in T. The Hall number
is positive and roughly proportional to x, the number of
doped holes per copper. The optical conductivity ct(to)
shows a Drude peak with spectral weight = x/m, where
m = 2m, . Neutron, muon-spin-rotation, and NMR ex-
periments reveal 5 —,

' local moments on the copper
sites with decreasing antiferromagnetic (AF) correlation
as x increases. These observations suggest a Mott-Hub-
bard insulator at x 0, so that doping introduces a low
density of carriers in a Hubbard band. Yet angular-
resolved photoemission data indicate the existence of a
Fermi surface, with an area consistent with band calcu-
lation and therefore Luttinger's theorem; i.e., the local
moments should be counted as part of the Fermi-surface
area which is proportional to 1

—x. Taken together,
these observations place severe restrictions on the theory.
Much of the theoretical efforts have focused on strongly
correlated models such as large-U Hubbard models or t-
J models. A number of ground states that exhibit short-
range AF order have been suggested, but it has proven to
be very difficult to decide which state is favored for finite
doping. In this paper we set a less ambitious goal, and
instead ask the question: Which of the suggested states
exhibits normal-state properties consistent with experi-
ments?

The photoemission experiment leads us to consider a
resonating-valence-bond (RVB) state with a spinon Fer-
mi surface ' which obeys Luttinger's theorem. Later
refinements, such as the Aux phase, typically have a
pointlike Fermi surface which acquires an area propor-
tional to x upon doping. These states are believed to be
favorable for small doping, but it is difficult to see how a
Luttinger Fermi surface can emerge. We assume that
the doping level of interest is sufficiently large to stabi-
lize the uniform RVB state. The physical implication of
this kind of state was studied earlier, but the coupling to

gauge field was not considered. The gauge field was dis-
cussed in detail by Ioffe and Larkin, and, more recently,
Grilli and Kotliar derived similar results using a slave-
boson formulation of the large-N t-J model. We follow
this formalism and decompose the electron operator c;
into f; b;, subject to the constraint b; b; +P f; f; =1.
The mean-field order parameter is g;i =(f; fj ) and is
different from the Baskaran-Zou-Anderson (BZA)
state for x~0. The low-energy behavior can be de-
scribed by the effective Lagrangian L =Lg+LF, where

LF=+f; (tl, —ao pF)f; +—g Je""f; f~ +c.c. ,
l, O' (ij),a

(I)
La =gb; (tI, ao p )tbt;+ate'"'b; b, +c.c. ,

I (ij )

and a,j is the gauge field associated with the phase of g;, .
The chemical potentials pF, ptt enforce (b; b, ) =x and
P (ft f; ) 1

—x. In the large-N mean-field theory
t =t, and b exhibits Bose-Einstein (BE) condensation
below a characteristic temperature Tg = 4tttx. The
ground state is then a Fermi liquid and the theory resem-
bles the heavy-fermion theory except that the bandwidth
is given by 8J. In this paper we analyze Eq. (1) with
N 2 above the BE temperature. As explained later, we
intend to identify the BE temperature with the supercon-
ducting T, . However, Ttt) is very large and we must
discuss how this temperature scale can be reduced. Be-
cause of strong coupling to spinon excitations, we expect
a reduction from t =t to t J. However, TtIP is still of
order 1000 K. In this paper we shall argue that inelastic
scattering of the bosons by the gauge field brings T,
=TqE down to the observed range of 100 K. It is in this
sense that we expect the effective Lagrangian Eq. (1)
above the BE temperature to describe the normal-state
properties.

We treat Eq. (1) in the continuum limit and introduce
a„(r) such that a;~ =(r;„—rj„)a„((r;+rl)/2) and the
boson Hamiltonian takes the familiar form (2m) 'b
x (itl„—a„) b The gauge-fi. eld propagator D„,(r, r)
=(T,a„(r, r)a, (0)) is obtained by integrating out quad-
ratic fermion and boson fluctuations, D„„=(IIJJ
+IIJJ) ', where IIJJ ' is the boson (fermion) current-
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current correlation function. The important low-lying
excitation comes from the transverse part (b„,—q„q,/
q )D, where D (q, co„)= (i to„ i/q+gzq ) ' which is
valid for i to„i &q and has the familiar form of the
transverse response function in metals. gq =gF +gq
is the sum of the Landau diamagnetic susceptibility for
fermions and bosons; i.e., gp = (1 —x)/mp and for
T & TaE, gtt = 2trxt /T«gp However, below TaE,
gttq must be replaced by xt due to the Anderson-Higgs
mechanism. This is why our results, which rely on the
existence of the soft overdamped mode zo=igqq, are
limited to T & TaE.

The model is invariant under the local gauge transfor-
mation f, f e' ", b be' ", and a„a„+8„8.
We emphasize that coupling to the gauge field serves to
enforce the local constraint b;tb;+g ftf; 1. Note
that b and f are not by themselves gauge invariant, and
should not be interpreted as physical excitations such as
holons and spinons. For example, Gtt (T,b—(r, z)
xb (0)) and Gp —(T,f (r, )zf t(0)) are not gauge in-
variant. The gauge-invariant objects we are interested in
are

Htt (T,b (r, z)b(r, z)b (0)b(0)),
Hp (T,f (r, z)f (r, z)f (0)f (0)),

and the physical electron Green's function

G (r, z) —(T,f (r, z)b (r, z)ft(0)b(0)).
We first consider He. ' For T& TaE, the transport

rate z, , ' of a Boltzmann gas due to the scattering by a
fiuctuating transverse gauge field is given by the thermal
average of z|, ', where

dqdzu(q/k) '(q & k/m) (e~"—I )

x lmD T(q, zu) b(tok —
tot, +q+ tu) (2)

and cut, k /2m. Noting that important contributions
come from low-frequency, gauge-field fluctuations e
=gzq and q &A, T '—= (Tm/2tt)'t, i.e., zu& (Tm) t

&&mp ', Eq. (2) is evaluated to give z, , ' = ktt T
x (gqm) '. A previous calculation "of the boson life-
time due to scattering by a Fermi particle-hole-pair exci-
tation yields z,, ' cc T t and we conclude that the
gauge-field contributions dominate. Our result can also
be obtained diagrammatically, but it is essential to keep
both self-energy and vertex corrections. The self-energy
itself is without the factor q /k in Eq. (2), and turns
out to be infrared divergent. Gg is not gauge invariant
and therefore its self-energy does not have physical
meaning. To emphasize this point, we employ a space-
time Feynman-path formulation. In a gauge field, each
path rl(zl) is weighted by e', where

@[rl]=& dzl[a(rl(zi), zi) ri(zl)+ao(rl(zi), zi)].
Since the important contributions come from co

& (Tm) mp '«T, it is a good approximation to con-
sider a static but spatially varying "magnetic" field
h Vxa. Htt(r, z) is given by the sum over all Feynman

1

\r

~(p/m)

/
/

/
r
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FIG. 1. Typical Feynman paths, projected onto the two-

dimensional plane, which contribute to (a) the boson polariza-
tion IIs, (b) the fermion polarization IIp, and (c) the electron
Green's function G . Dashed and solid lines refer to boson and
fermion paths. The circle with radius qo represents the scale
of the fluctuating gauge-field flux.
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paths, the projection of which onto real space is shown in
Fig. 1(a), multiplied by e'~, where p f a dl is the flux
through the area 8 enclosed by the closed loop in Fig.
1(a), and averaged over a. To estimate h we note that

(ah~ i )-J dro(es —1) 'q ImD (q, to) = T/gq

for q &qo, where qo=(T/gz)' . Thus we envision
a spatially random h which varies on a scale of qo

'

with (h ) =qoT/gq. We can write (e'~) exp( ——,
'

(p ))
and (p ) N(p;), where N Aqo and (p2) (h )qo 4.

Thus we conclude that Htt Htt(e'~), where He z
x exp( —2mr 2/z) is the noninteracting polarizability and
(e'~) =exp[ —(T/Zq)r(z/m)'t ]; we have set A =r(z/
m) ' . For T & TaE, gq =gp is a constant. Noting that
the typical r = (z/m)'t, the exponential decay can be
interpreted as a mean free path of T 't or a transport
time z„-T 'gqm, in agreement with Eq. (2).

We note that Tg occurs when the de Broglie wave-
length A, T becomes comparable to the average particle
spacing. The incoherent effects introduce an inelastic
mean free path (T/m) ' which is comparable to kT
and we expect a reduction in TaE. This can be described
by introducing a gauge-invariant propagator Ge(r, z)

(Gtt(r, z, [a] )exp(i4[ro])), where ro(zl ) r(zi/z) is
the straight-line path in space time. By considering a
path-integral representation of Ge(r, 0) we obtain in the
Boltzmann regime Ge(r, 0) Ge(r, P) -x exp[( —XT
+T/gq)r ], so that the correlation length g-(A. T
+T/gz) ' is reduced from A, T by inelastic scattering.
Since gtt can be thought of as fiuctuating droplets of per-
fect diamagnets with radius g, we estimate gtt = txg

t TaF/T, whe—re

TBE T@(g/g )'- (1+mgq ')
For T & TaE, gq gp+gtt becomes dominated by gtt and
g can be shown to grow exponentially so that we may in-
terpret TBE as the reduced crossover temperature.

Next we consider IIp. The analogous problem of a
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transverse electromagnetic field coupled to electrons has
been considered by Reizer. ' Its extension ' to compute
the transport time due to staggered gauge field produced
rF ' —(T/gd) EF in 2D. We find the same result for
the present problem. We see in Fig. 1(b) that the impor-
tant Feynman paths are restricted to a tube of radius

kF ' around the classical straight-line path so that
N =rqo, (P ) =(h ')(qokF) = TkF /gd, and (e'~)

-exp[ —(T/gd) 'kFr] leading to a mean free path in

agreement with vFrF obtained by diagrams. Just as for
bosons, the self-energy is infrared divergent and it is cru-
cial to consider gauge-invariant quantities.

Next we consider the electron spectral function
ImG (k, 0). The zeroth-order calculation is just a con-
volution of the noninteracting GF and Gq. We find a
continuum background which begins at 0 = —

i p8 i—(i k i

—kF) /2mF and extends to —4J with an area of
(1 —x)/2, where pe = —keTln(mT/2zx). In addition,
there is a peak centered at 0 = ill /2mF —pF with a
width equal to (Tm) 'i mF

' and an area of x. This peak
sharpens to become the quasiparticle 8 function below

TaE. The origin of the width is that the momentum of
the fermion is broadened by the typical boson momen-
tum —(Tm) 'i . We note that the total area is (1+x)/2
instead of unity. This is because some spectral weight
has been pushed to infinity as U

We next ask how this picture is modified by the cou-

pling to the gauge field. We divide the gauge field into
two regimes, co & T and ro & T. For co & T we make the
quasistatic approximation as before the compute G us-

ing the path-integral method in an explicitly gauge-
invariant manner. As shown in Fig. 1(c), the boson path
exhibits a random walk while the fermion path is re-
stricted to nearly a straight line (the Gorkov approxima-
tion). We obtain G =Go(e' ) = Goexp[ —(T/gd)r(r/
m)'i ]. Near the quasiparticle peak, we estimate the
lifetime by replacing r =vFr in the exponent, and we ob-
tain r;„'=(T/gd) i (mmF) ' . This is less than the
T' width due to momentum broadening and is there-
fore negligible. For co & T we have to use diagrammatic
methods. The dominant contribution is from the self-

energy correction to the fermion, which is J(A/gd)
We check that vertex corrections give rise to only loga-
rithmic corrections. The fermion and boson have very
different velocities and sample different frequency
domains of the fluctuating gauge fields so that the can-
cellation between self-energy and vertex in the quasistat-
ic limit no longer applies.

To summarize, ImG (k, O) consists of a continuum
for 0 & —

ipse

i
—(ski —kF) /2mF and a peak at

& =
i ki /2mF pF The peak is seve—rely . broadened

with a width equal to max[A 'J', (Tm) ' mF '],
which leads to asymmetric line shape with high-energy
tail —0 . Thus the Landau criterion that the quasi-
particle width should be less than its energy is violated.
On the other hand, the location of the peak in k space is

determined by the "spinon" Fermi surface which satisfies

Luttinger's theorem. The dispersion of this peak is

characterized by a bandwidth of 8J. All these features
are consistent with the photoemission data. According to
our view the observed continuum "background" is intrin-
sic and in fact contains the bulk of the spectral weight.
Another interesting prediction is that for

i k
i

& kF,
when the peak has moved through the Fermi surface, the
continuum remains with a threshold which recedes from
the Fermi energy as i k i

—kF increases. This feature
may already have been observed but further studies will

be helpful. We also predict that the intrinsic continuum
background is much reduced for inverse photoemission
(bremsstrahlung isochromat spectroscopy) or for photo-
emission in electron-doped materials.

The tunneling density of states is readily obtained us-

ing I (0) =fdklmG (k, Q) and we find that I (0)
=x+

i
0 i/J for 0 &0, but contrary to Ref. 6, I (0)

=x for 0&0. The asymmetry between particle and
hole in tunneling and in photoemission is not surprising
in the large-U model. An added electron can only enter
a vacant site, so that for 0 )0, ImG and I are propor-
tional to x. On the other hand, it is always possible to
remove an electron so that I is of order unity for 0 & 0.

We are now ready to discuss various transport proper-
ties. We begin with the conductivity where the A field
couples to c f b . We can couple A to f or to b
with the standard minimal coupling, but not to both.
We choose the former. Ioffe and Larkin showed by in-

tegrating out fluctuations in the a field that the resistivi-

ty is the sum of the boson and fermion resistivity. In our
case ae-xe T '/m«a FT so that cr-oe, thus
explaining the long-standing puzzle of the linear resis-
tivity. Below TpE, aq diverges and we recover the
Fermi-liquid result. We have generalized this composi-
tion rule to other transport properties using a diagram-
matic technique. Here we outline the physical basis of
these results. The local number conservation requires
the fermion current JF to be opposed by a boson back-
flow Je. Since JF =eF(E+e) and Je =cree, where

—Vao —a, the constraint JF+Je =0 produces a to
partially screen out A. Since the physical current is
JF= —Jg, we obtain o '=~F '+a~ '. For the Hall
efl'ect, the magnetic field produces a fermion diamagnet-
ic current which must be canceled by a boson current
and we obtain RH = (RHge+ RHgF )/(ge+gF ). For
T(Tzz, gz ~ and we have the Fermi-liquid result
RH =RH = —(1 —x) '. However, for T & TaE, using

ga —Ta JmT, gF-(1 —x)/mF, and RH-x ', we con-
clude that the boson RH dominates so that upon expand-
ing for T & TaE, we obtain RH ——x ' —yJ/T, where

y = 1. Note that there is a temperature-dependent
correction term which is independent of x, and leads to
an enhancement of the Hall number near Tqq. Experi-
mentally, the Hall number is typically a factor of 2
larger than the hole density determined by chemical
means. Unfortunately, the temperature dependence goes
in the opposite direction from our prediction. Neverthe-
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less, it will be interesting to measure RH at very high
temperatures such as 600 K, where the resistivity is
known to be linear and see if RH will go towards x

Similar considerations lead us to conclude that the
thermopower S=SF+Se and the thermoconductivity
K=KF+Ke. Recall that SF- —(ke/e)keT/EF and Se
—(ke/e)[1 —In(2@x/mkeT)); we expect Se to dom-
inate and S to be near ke/e. Experimentally S for
La2 —„Sr„Cu04 is indeed large and positive and indepen-
dent of magnetic field, as we would predict. We expect
K to be dominated by KF, so that the Wiedemann-Franz
law will not be obeyed. Experimentally, EC seems to be
complicated by phonon effects.

Spin fluctuations couple only to f and no composition
law is required. With a spin Fermi surface we expect a
Pauli spin susceptibility g,~;„, as observed in the Bi com-
pounds and 07 Y-Ba-Cu-O. The spin-spin correlation
will have a very short correlation length, but will be in-
commensurate due to nesting of the f Fermi surface
when x&0. The NMR relaxation rate 1/T~ will be
enhanced and we may expect 1/T~ T =J ' on the
copper site. Whether this enhancement will be reduced
on the oxygen site due to form-factor effects requires a
quantitative analysis which we have not undertaken.

We conclude by outlining a scenario whereby TqE can
be identified with the superconducting T, rather than the
onset of a Fermi-liquid state. At half filling the order
parameter D;J (f;lfji f;if~i) is eq—uivalent to g;~ by
SU(2) symmetry. For xWO at the mean-field level, it is

possible that at a temperature TD below the onset of
g;~, D;J becomes nonzero. However, the gauge field pro-
duces random magnetic fluxes and is pair breaking for
D;J, so that we expect a significant suppression of the
transition to TD ( TD . As long as both TD and TiiE are
below min(TD, Tag), (b) and D;, will become nonzero
simultaneously below T, =max(TD, TaE), so that the
gauge-invariant (under a) superconducting order param-
eter 6;1 =(c;ical —c;ic,1) = (6 ) D;1 becomes nonzero
This is because the diamagnetic response gF or gq
diverges below TD or TaE, respectively, which in turn
stiffens up the gauge field that was responsible for the
suppression of TaE or TD in the first place. More gen-
erally, we believe that the short inelastic lifetime due to
scattering by the gauge field plays an important role in

suppressing T„so that we expect a large 2ho/kT, ratio

and a rapid growth of the gap just below T, .
To conclude, we find that holes are strongly scattered

by a fluctuating gauge field which corresponds physically
to fluctuations in the chirality parameter (S| S2xS3). '

Superconductivity coincides with the onset of coherence
among the holes. We have found at least one model
which explains qualitatively most of the anomalous
features of the oxide superconductors. However, since
the strong scattering by gauge field seems quite generic
to RVB models, the uniqueness of this model is not
known at this point.
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