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Long Crossover Times in a Finite System
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We study a stochastic interacting-particle system which displays a nonequilibrium transition in its re-
laxation dynamics in the infinite-volume limit. The transition is destroyed by restriction to a finite
volume, but its remnants remain until a crossover time T, (L,e), where L is the system size and e is the
control parameter measuring the distance from the bulk transition. We find that the crossover time
T, (L,e) diverges when e 0 in a ftxed volume. Thus this finite-volume system displays arbitrarily long
time scales near the transition.

PACS numbers: 05.40.+j, 02.50.+s, 05.70.3k, 82.20.Mj

The effect of finite system size near critical points of
equilibrium phase transitions has attracted much atten-
tion because of its important role in Monte Carlo simula-
tions in condensed-matter and high-energy physics. '

Finite volumes round off the transitions, mollifying the
divergence of correlation lengths and times at the critical
point. Most studies of time scales in finite volume have
concentrated on correlation or relaxation times, and
these time scales are bounded at the transition point in a
fixed finite volume. Attention on long time scales in

nonequilibrium systems has focused on metastable states,
~hose lifetimes diverge only in the thermodynamic limit.
Little or no attention has gone to the crossover time, i.e.,
the time when the effects of the system size start to
influence the dynamics.

In this Letter we study an interacting-particle system,
specifically a reversible system of coalescing random
walks in one spatial dimension, which displays a sharp
transition in its relaxation kinetics in infinite volume.
The transition is marked by the appearance of long-lived
correlations in the particle positions, resulting in anorna-
lously slow asymptotic relaxation rates when the initial
concentration of walkers is belo~ a critical fraction of
the equilibrium concentration. The anomalous dynamics
disappears in the limit t ~ in a finite volume L, but
they appear to exist until the crossover time T, [defined
precisely in Eq. (15) below] when a uniform asymptotic
decay sets in. The exact solution of the model in finite
volume yields the crossover-time scaling

T, (L, e)-L'ln[e '],
for L&&1 and eL«1, where t. measures the distance
from the bulk transition point. Thus, this system
possesses a characteristic finite-size time scale which is
arbitrarily large as the apparent transition point (e=0)
is approached.

In usual (1D) transfer-matrix approaches to finite-size
effects, the convergence of eigenvalues controls the long-

est time scale as L . ' There, the longest scales are
identified with the inverse of a vanishing mass gap. %'e
find that it is not just this spectral development, but also
the critical behavior of the coeQcients of the order-
parameter expansion (in our case, the macroscopic con-
centration) near the transition which determines the

scaling of the crossover time.
We formulate our model on a one-dimensional lattice

and then take the continuum limit to simplify the solu-
tion. The model consists of particles which diffuse in-

dependently with macroscopic diffusion coefficient D un-
til two of them meet. Upon encounter, two particles fuse
into one. Additionally, each particle randomly gives
birth to another at an adjacent lattice site at a fixed rate
y. This system is a one-dimensional model of reversible
diffusion-limited coagulation, denoted 2 +2 A. The
physical quantity of interest is the time-dependent con-
centration of particles, C(t). Spatial correlations can
dominate the kinetics of such diffusion-limited processes,
and the usual "mean-field" rate equations for the macro-
scopic concentration often do not apply in low spatial di-
mensions. This is the case for this process in particu-
lar and, in fact, C(t) satisfies no autonomous ordinary
differential equation of finite order. '

We analyze the system by considering the time-
dependent probability, E(x,t), that an interval of length
x is empty. The exact (closed) kinetic equation for
E(x,t) follows simply from an analysis of the terms
which contribute to its time development: An interval of
length x can become empty only if it is occupied by a
single particle at one of its end points and this particle
diffuses out. The probability that a particle is at the end
of an otherwise empty interval of length x is
E(x —hx, t) —E(x,t), and the diffusive hop rate is
D/d, x, where hx is the lattice spacing. Because there
are two ends of the interval, the contribution of this pro-
cess to the rate of change of E(x, t) is

[i3E(x,t )/8t]d;tt, „,-2D[E(x ax, t) E—(x, t)]//nx'. —
(2)

If an interval of length x is empty, particles enter into it
by two processes. First, a particle just outside the inter-
val can diff'use in. The probability that there is a particle
just outside one end point is E(x, t) —E(x+Ax, t), and
it hops into the interval at rate D/Ax . Because of the
two ends of the interval, this contributes

[l3E(x,t )/'t3t]d;tt, „= 2D[E(x,t) —E(x+ax, t)—]//ax'.
(3)

Second, a particle just outside the empty interval [proba-
bility E(x, t) —E(x+Ax, t)] can give birth to a particle
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vL/2D»1) we find

ai = —2, a2= etL/'2D, a3= —2. (i8)

Thus for a fixed large system size, close to the transition
point such that 0 & e«D/Lv, the crossover time is given

by the asymptotic formula

T, (L, e) = (5tr ) '(L /2D)in[1/e] . (i9)

This is the scaling presented in Eq. (1). Note our main
result that T, (L,e) is unbounded for finite system size
near the transition at e=0. Equation (19) agrees quan-
titatively with a direct numerical evaluation of the cross-
over time from Eq. (14).

The mathematical mechanism responsible for the ex-
istence of the crossover time is the alternation of the
signs of the coefficients a„. When a & a„ the even and
odd terms in the series for 8C(t) have opposite signs (+
and —,respectively). This permits the vanishing second
logarithmic derivative; in Eq. (17), a3/a2 & 0 is a neces-
sary condition for the existence of T, . At the transition
point the even coefficients all vanish. If a, & a & L/2D,
the coefficients are all negative. The a„'s vanish identi-
cally if the system is initially in equilibrium (a =t'/2D),
and they are all positive for a & v/2D. Thus no crossover
time, as defined by Eq. (15), exists unless a & a, .

The mathematical mechanism for the infinite-volume
transition appears to be quite diA'erent from the mani-
festation of its remnants for L & ~. The relaxation
spectrum is continuous for the infinite system [this is not
surprising in light of Eq. (14b)], but it also extends con-
tinuously all the way down to k =0 [this is surprising in

light of Eq. (14b), which suggests a gap of L /8D]. The
eigenfunctions of Eq. (5) with the infinite-volume bound-

ary conditions are, however, qualitatively diA'erent for
A. & v /8D or X & v /8D: The temporally slow modes all—C~x/2
decay in space slower than e ",and are recruited
into the dynamics only for initial conditions correspond-
ing to equilibrium concentrations less than exactly C,q/2.
This "spectral" mechanism is not clearly identified
within the finite-size analysis described above. The
infinite-volume limit of the apparently simple, linear,
constant-coefficient partial diA'erential equation in Eq.
(5) is a surprisingly singular limit of the finite-volume

problem.
One natural question that arises concerns the role that

the continuum limit plays in the phenomena described in

this paper. In fact, it plays no role qualitatively. The

unbounded behavior of the crossover time arises in this
model as long as it has at least three eigenvalues, '' cor-
responding to a four-site system with periodic boundary
conditions. We thus arrive at the conclusion that even
very small discrete interacting stochastic dynamic sys-
tems can possess time scales of arbitrarily large magni-
tude.
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