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Long Crossover Times in a Finite System
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We study a stochastic interacting-particle system which displays a nonequilibrium transition in its re-
laxation dynamics in the infinite-volume limit. The transition is destroyed by restriction to a finite
volume, but its remnants remain until a crossover time 7.(L,e), where L is the system size and ¢ is the
control parameter measuring the distance from the bulk transition. We find that the crossover time
T.(L,e) diverges when é— 0 in a fixed volume. Thus this finite-volume system displays arbitrarily long

time scales near the transition.
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The effect of finite system size near critical points of
equilibrium phase transitions has attracted much atten-
tion because of its important role in Monte Carlo simula-
tions in condensed-matter and high-energy physics.'™>
Finite volumes round off the transitions, mollifying the
divergence of correlation lengths and times at the critical
point. Most studies of time scales in finite volume have
concentrated on correlation or relaxation times,’> and
these time scales are bounded at the transition point in a
fixed finite volume. Attention on long time scales in
nonequilibrium systems has focused on metastable states,
whose lifetimes diverge only in the thermodynamic limit.
Little or no attention has gone to the crossover time, i.e.,
the time when the effects of the system size start to
influence the dynamics.

In this Letter we study an interacting-particle system,
specifically a reversible system of coalescing random
walks in one spatial dimension, which displays a sharp
transition in its relaxation kinetics in infinite volume.®
The transition is marked by the appearance of long-lived
correlations in the particle positions, resulting in anoma-
lously slow asymptotic relaxation rates when the initial
concentration of walkers is below a critical fraction of
the equilibrium concentration. The anomalous dynamics
disappears in the limit t— oo in a finite volume L, but
they appear to exist until the crossover time 7. [defined
precisely in Eq. (15) below] when a uniform asymptotic
decay sets in. The exact solution of the model in finite
volume yields the crossover-time scaling

T.(L,e)~L*Inle "1, (1)

for L>1 and €L <1, where ¢ measures the distance
from the bulk transition point. Thus, this system
possesses a characteristic finite-size time scale which is
arbitrarily large as the apparent transition point (¢ =0)
is approached.

In usual (1D) transfer-matrix approaches to finite-size
effects, the convergence of eigenvalues controls the long-
est time scale as L — o0.*3 There, the longest scales are
identified with the inverse of a vanishing mass gap. We
find that it is not just this spectral development, but also
the critical behavior of the coefficients of the order-
parameter expansion (in our case, the macroscopic con-
centration) near the transition which determines the

scaling of the crossover time.

We formulate our model on a one-dimensional lattice
and then take the continuum limit to simplify the solu-
tion. The model consists of particles which diffuse in-
dependently with macroscopic diffusion coefficient D un-
til two of them meet. Upon encounter, two particles fuse
into one. Additionally, each particle randomly gives
birth to another at an adjacent lattice site at a fixed rate
y. This system is a one-dimensional model of reversible
diffusion-limited coagulation,® denoted 4+ 4+>A4. The
physical quantity of interest is the time-dependent con-
centration of particles, C(¢). Spatial correlations can
dominate the kinetics of such diffusion-limited processes,
and the usual “mean-field” rate equations for the macro-
scopic concentration often do not apply in low spatial di-
mensions.”™® This is the case for this process in particu-
lar and, in fact, C(¢) satisfies no autonomous ordinary
differential equation of finite order.%'°

We analyze the system by considering the time-
dependent probability, E(x,t), that an interval of length
x is empty. The exact (closed) kinetic equation for
E(x,t) follows simply from an analysis of the terms
which contribute to its time development: An interval of
length x can become empty only if it is occupied by a
single particle at one of its end points and this particle
diffuses out. The probability that a particle is at the end
of an otherwise empty interval of length x is
E(x —Ax,t) —E(x,t), and the diffusive hop rate is
D/Ax?, where Ax is the lattice spacing. Because there
are two ends of the interval, the contribution of this pro-
cess to the rate of change of E(x,1) is

[0E (x,1)/8t )it ow =2DE (x —Ax,t) — E(x,1)]1/Ax?.

2)
If an interval of length x is empty, particles enter into it
by two processes. First, a particle just outside the inter-
val can diffuse in. The probability that there is a particle
just outside one end point is E(x,t) — E(x+Ax,t), and
it hops into the interval at rate D/Ax2 Because of the
two ends of the interval, this contributes

[0E (x,t)/0tgir o= —2DIE(x,t) —E (x+Ax,t)1/Ax?.
3)

Second, a particle just outside the empty interval [proba-

bility £(x,1) —E(x+Ax,t)] can give birth to a particle
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at an end point of the interval. It gives birth to another
particle in the interval at rate y/2, and taking into ac-
count both ends of the interval, this process contributes

[aE(x,t)/at]bmh in= — ‘}’[E(X,!) ‘E(X +Ax,t)] .(4)

Adding these terms together and taking the continuum

limit Ax — 0, we arrive at the kinetic equation
OE (x,1)/8t =2D 3’E/dx*+v dE/dx , (5

where v =yAx. Note that y— o as Ax— 0, keeping v

finite, to obtain a nontrivial continuum limit. The
boundary condition for Eq. (5) at x =0 is
E,1)=1 (6)

because the point particles occupy a set of zero measure.
(In fact, it is this boundary condition which imposes the
coagulation reaction.) As long as the concentration is
nonzero, the other boundary condition is

E(L,1)=0, @)

where L is the interval length, 0 <L < oo. When L is
finite we take periodic boundary conditions so that we re-
tain translation invariance.

The concentration C(z) is recovered from E (x,t) by
noting that the probability that any particular site is oc-
cupied is the probability that it is not empty, i.e.,
1 —E(Ax,t)=E(0,t) —E(Ax,t). The concentration is
this probability per unit length, so in the continuum limit
we have

C(t)=—9E(x,t)/9x |x=0. (8)

This formulation of the problem allows us to solve for
the exact time-dependent concentration of interacting
random walkers in (statistically) spatially homogeneous
systems. This is not to say that spatial fluctuations in the
microscopic density are ignored as in a mean-field ap-
proximation. Provided only that the initial state is sta-
tistically homogeneous, all correlations that develop dur-
ing the relaxation are fully accounted for without ap-
proximation.

We now discuss the system’s behavior in the thermo-

J

27 72Ceql1 — (1 =2Co/Ceq) "1 (w?1/2D) ~*expl—v?t/8D}, Co> Ceo/2,
8C(t) =C(1) = Ceq~ {1 — 7~ 2Ceq(v?t/2D) ~2expi—v%/8D} , Co=Ceo/2,
— Ceq(1 =2Co/Ceg)expl—v?[Co/Ceq — (Co/Ceq) *11/2D} , Co < Ceq/2.

The infinite-volume relaxation dynamics, with the
leading exponential time dependence for Co> Ce/2 lie.,
exp{—rv?t/8D}] removed, is shown in Fig. 1 for several
initial concentrations. The relaxation dynamics under-
goes a sharp transition when the initial concentration is
exactly half of the equilibrium concentration. While the
exponential relaxation time has the value =8D/v? uni-
Sformly in the initial condition for Co= Ceq/2, it becomes
initial -condition dependent when Co < Ceq/2. The fact
that the asymptotic dynamics in Eq. (11a) for Co
> C.q/2 does not depend on the precise value of Cy is
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FIG. 1. Concentration perturbation vs time for a selection
of initial conditions around Co=Cc/2. The leading time
dependence of Co> Ceq/2 is factored out to highlight the sharp
transition in the relaxation kinetics in the infinite system.
From top to bottom, the initial concentrations are Co=0.1C¢q,
0.2Ccq, - - - ,0.9C¢q.

dynamic limit, displaying the sharp transition in the re-
laxation dynamics. We consider initial conditions con-
sisting of the “experimentally” accessible equilibrium
states at various values of the system parameters D and
v. The stationary solution to Eq. (5) with the infinite-
volume boundary conditions is

Eeq(x)=e ~0X/20 9)
yielding the equilibrium concentration
Ceq=v/2D. (10)

If the system starts out with concentration C(0)=Cy
and relaxes to a new equilibrium with concentration
C(o0) =Cq, then the exact time dependence of the tran-
sient depends on the initial concentration. For 71— oo,
the deviation from the equilibrium concentration is®

(11a)
(11b)
(11¢)

what one would expect from any system that admits a
“hydrodynamic” description. The relaxation process
slows down, however, if Co < Ccq/2, reflecting the domi-
nance of microscopic density fluctuations in the system’s
macroscopic kinetics. At low initial concentrations there
are typically relatively large empty regions of length of
the order 1/Co. These empty spaces must be filled up to
reach equilibrium, and the only mechanism for this is the
diffusion of newly born particles from the end points of
these gaps. Concentration fronts permeate empty re-
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gions at speed v, so a typical time scale is 7= (Cqov) ™!
=(ZD/U2)Ceq/C0, in accord with the exponential relaxa-
tion time in Eq. (11¢) for Co< Cq/2. The remarkable
point about this permeation mechanism is that its
influence on the asymptotic dynamics becomes negligible
precisely when Co=Cy/2.

We now turn to the finite-volume process. As before,
we consider the equilibrium states of the system at fixed
values of the system parameters as initial conditions.
The stationary solution of Eq. (5) with finite L is

Ecq(x) =[e ~**/20 — ¢ ~WL/2D)/[1 — e ~¢L/2D)  (12)
and the equilibrium concentration in finite volume is
Ceq=(0/2D)/[1 —¢ ~°L/2P] (13)

We denote the value of v/2D at which the system is ini-
tially prepared by a (0 < a < ), and we treat a as the
system control parameter, so that the bulk transition
occurs at a =a.=v/4D.

The time-dependent solution of Eq. (5), with the ini-
tial condition Eq. (12) (with v/2D =a) and the finite-L
boundary conditions, is straightforward using a spectral
decomposition. The exact time-dependent deviation of
the concentration from its equilibrium value is

C()=C(t) = Ceq=Q/L) 3 aye ™",
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FIG. 2. Concentration perturbation vs time in finite volume.
As in Fig. 1, the leading bulk time dependence for Co> Ceq/2
is factored out. The dotted lines are the corresponding
infinite-volume curves. Below the transition point the anoma-
lous decay persists until the crossover time 7, defined in Eq.
(15), and indicated by the dot on the curves for @< a.
=0.5(v/2D). From top to bottom, the initial concentrations
are given by Co=a/[l —exp(—aL)] with a=0.1(v/2D), ...,
0.9(v/2D). The system size here is Lv/D =100.

200

(14a)
n=0Q

where

A =@?2D)QrnD/oL)*+ L}, (14b)
and

l__(_l)ne(l‘/4D—a)L 1 1
a, = - .
l—e L 1+ (vL/47znD)?* 14+ —4Da/v)*(vL/4xnD)?

The exact relaxation dynamics in finite volume, with
the leading bulk exponential time dependence (i.e.,
exp{—v?/8D}) removed, is shown in Fig. 2. For any in-
itial concentration the decay is eventually dominated by
the first term in the sum in Eq. (14a), but remnants of
the infinite-volume transition are visible, for a < a,, for
times short compared to the “crossover time.” We iden-
tify the crossover time, for a < a., as the time where the
qualitative shape of the curve departs from the bulk
shape. More precisely, we define the crossover time 7
as the location of the inflection point of curves in Fig. 2:

0=d?Inl|8C()|1/dt?| =7, . (15)

This specific definition is just one out of many possible
specific definitions of the crossover time. The time where
“the qualitative shape of the curve departs from the bulk
shape” is not unambiguously defined by these words
alone but, as indicated in Fig. 2, Eq. (15) certainly cap-
tures its essence. In any case, the qualitative validity of
our observations is not affected by minor quantitative
variations in the crossover-time definition.

We define e=(a, —a)/a. = 0, measuring the distance
from the critical initial concentration for a < a,. The
crossover time is certainly a function of the system size
and, referring to Fig. 2, it is also clearly a function of ¢,

(14¢)

increasing as € decreases. Direct numerical evaluation of
T.(L,€) near ¢ =0 yields crossover times large compared
to L2/D. Thus we may perform an asymptotic analysis
considering only the first two corrections to the leading
behavior of the series in Eq. (14). Indeed, for times
1> LD, |a,|e ™ decreases very quickly with increas-
ing n, justifying the neglect of all but the earliest terms
in the sum. Hence, near the crossover time we write

In[|6C() |1 =1Inllaje ™ +aze " +aze ™|]
+In[2/L] (162)

~ —Au+Inlla) |1+ @ayf|a,|)e 270"
+(ay/lai e ™™ +1nl2/L]. (16b)

The crossover time is then simply evaluated from Egs.
(15) and (16b):
T.= (A3—%3) ~'Inl—as/as]
+ Qs —2) TnlOu =) Y05 -2, (17)

The behavior of the coefficients a, near ¢=0 is found
from Eq. (14c). For large volumes (strictly speaking,
when the equilibrium number of particles is large,
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vL/2D>1) we find
a = —2, a,=e€vlL/2D, ai;= —2. (18)

Thus for a fixed large system size, close to the transition
point such that 0 < e € D/Lv, the crossover time is given
by the asymptotic formula

T.(L,e) = (5z%) ~"(L*2D)Inl1/e]) . (19)

This is the scaling presented in Eq. (1). Note our main
result that T.(L,e) is unbounded for finite system size
near the transition at ¢=0. Equation (19) agrees quan-
titatively with a direct numerical evaluation of the cross-
over time from Eq. (14).

The mathematical mechanism responsible for the ex-
istence of the crossover time is the alternation of the
signs of the coefficients a,. When a < a., the even and
odd terms in the series for §C(¢) have opposite signs (+
and —, respectively). This permits the vanishing second
logarithmic derivative; in Eq. (17), a3/a; <0 is a neces-
sary condition for the existence of 7,.. At the transition
point the even coefficients all vanish. If a. <a <v/2D,
the coefficients are all negative. The a,’s vanish identi-
cally if the system is initially in equilibrium (a=v/2D),
and they are all positive for @ > v/2D. Thus no crossover
time, as defined by Eq. (15), exists unless a < a..

The mathematical mechanism for the infinite-volume
transition® appears to be quite different from the mani-
festation of its remnants for L <oo. The relaxation
spectrum is continuous for the infinite system [this is not
surprising in light of Eq. (14b)], but it also extends con-
tinuously all the way down to A =0 [this is surprising in
light of Eq. (14b), which suggests a gap of v%/8D]. The
eigenfunctions of Eq. (5) with the infinite-volume bound-
ary conditions are, however, qualitatively different for
A <v?%/8D or A> v%/8D: The temporally slow modes all
decay in space slower than e_C“‘X/Z, and are recruited
into the dynamics only for initial conditions correspond-
ing to equilibrium concentrations less than exactly Ceq/2.
This ‘‘spectral” mechanism is not clearly identified
within the finite-size analysis described above. The
infinite-volume limit of the apparently simple, linear,
constant-coefficient partial differential equation in Eq.
(5) is a surprisingly singular limit of the finite-volume
problem.

One natural question that arises concerns the role that
the continuum limit plays in the phenomena described in
this paper. In fact, it plays no role qualitatively. The
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unbounded behavior of the crossover time arises in this
model as long as it has at least three eigenvalues,'' cor-
responding to a four-site system with periodic boundary
conditions. We thus arrive at the conclusion that even
very small discrete interacting stochastic dynamic sys-
tems can possess time scales of arbitrarily large magni-
tude.
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