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Random-Matrix Description of Chaotic Scattering: Semiclassical Approach
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We present a semiclassical theory for the two-point correlation function of the eigenphases of the S
matrix for chaotic scattering. It is expressed as a sum of contributions from unstable periodic orbits of
the classical scattering mapping. Backed by numerical results and for correlation ranges r (—l/It) we

obtain a universal function which is consistent with the result of Dyson's circular ensemble. This result

adds to the conjecture that universal fluctuations governed by random matrix theory are the quantum

manifestation of classical chaos.
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The study of chaotic scattering from both the classical
and the quantum-mechanical points of view has recently
appeared at the forefront of chaos research. This is due
to the large variety of fields where chaotic scattering is

encountered and to the new and interesting theoretical
problems which arise in the attempts to elucidate this

phenomenon. ' ' In this Letter we shall concentrate on

the quantum description of chaotic scattering. To set the
stage, we shall briefly describe the present state of the
quantum theory.

The quantum description of scattering is given in

terms of the scattering matrix 5;; (E). It is labeled by
the (discrete or continuous) quantum numbers i (i')
which specify the state of the system before (after) the
collision, and by the total energy E. Chaotic scattering
is characterized by fluctuations in the dependence of the
5 matrix on i or i' at a fixed energy (i.e., "speckle" pat-
tern in angular distributions ), or in the dependence on
the energy for a fixed transition ("Ericson fluctua-
tions '' '" ' ). The unpredictability and chaoticity of
scattering from simple systems can be appreciated by
noting that the spectrum of Ericson fluctuations corre-
sponds to colored noise, and approaches a white-noise
spectrum in the limit 6 0.

In our previous work on quantum chaotic scatter-
ing ' ' ' we showed semiclassically that the above-
mentioned fluctuations and their statistics can be traced

back to the chaotic nature of the underlying classical dy-
namics. The correlation lengths can be expressed in

terms of classical quantities which characterize the
(fractal) set of unstable bounded orbits. On the basis of
these results it was proposed that the S matrix is a typi-
cal representative of Dyson's orthogonal ensemble of uni-

tary symmetric random matrices (DOE). ' ' This con-
jecture was tested by a statistical analysis of the distribu-
tion of the 5-matrix eigenphases for two models which
were solved numerically. ' " The nearest-neighbor-
spacing (NNS) distribution indeed follows the predic-
tions of random-matrix theory' (RMT) as soon as the
classical dynamics becomes chaotic. Together with the
statistics of the transition probabilities

~ S;; ~, this pro-
vides convincing evidence in favor of the proposed hy-
pothesis.

The main purpose of this Letter is to provide a
theoretical foundation for the proposed link between
RMT and quantum chaotic scattering and to study sys-
tematically its range of validity. This will be done by in-
vestigating the two-point correlations in the spectrum of
S-matrix eigenphases. We shall present a semiclassical
expression for the normalized cluster function, ' Y2(r).
This function yields the h3 statistics by a simple integra-
tion, and gives relevant information on the NNS distri-
bution for small spacings. ' We shall show below that
the derived function reproduces Dyson's expression for
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the RMT cluster function in an interval whose length
scales inversely with h. The analytical results will be
corroborated by a detailed numerical investigation.

For problems with time-reversal symmetry we consid-
er unitary and symmetric S matrices of dimension E.. L
depends on the number of quantum numbers, f, needed
to specify an initial or a final state, L —6 f. For the
sake of simplicity we consider here systems with f l.
The S matrix is diagonal in the eigenchannel representa-

tion where it takes the form S=g, t a)e '(at. Here,
t a) and co, denote the eigenstates and the eigenphases of
the 5 matrix, respectively. The spectral density of the
eigenphases then reads as follows:

d(m) =pa(r0 —co.) = g e ' ~Trs".1 —i AN

a 2~ —clo

The two-point correlations are expressed in terms of
the probability density P2(rl) of finding two levels at a
distance ri,

1
~ 2x —

I g/21

P2(il)- d x++ d x —+ dx —Lb(g) t.L(L —1) 4
I n/i I 2 2

(2)

OO

Y2(r) —~ 1
—2 g s/v cos r N1 (L) 2'

N 1 L
(3)

The Fourier coefficients s~ are given by

s~t '—=—tTrS t' —1
1

L

1+ 2$-(L —I )J dq P,(q)e'"".

The behavior of s/v in the limits N 0 (~) determines
the behavior of Y2(r) for large (small) r. For N 0 we
have so L —

1 which is a large number. For N/L»1
we have (ro, —re//)N » 2/r for aaP, and hence
tTrS t L, which implies s/I/ 0. In the sequel we
shall provide a semiclassical expression for s~ which in-

terpolates between these extreme N values.

It is convenient to discuss the two-point correlations in

terms of the cluster function Y2(r), ' which is obtained
from the density P2(g) by subtracting the probability
density in the absence of correlations. The argument of
the cluster function, r, gives the phase difference q in

units of the mean spacing 2/r/L. Substituting (1) into
(2) and using the the same notations and normalization
as in Ref. 17, we get

t
The operator S (N ) 1) has no direct physical mean-

ing. However, since S is a unitary mapping of the initial
(and final) space of states onto itself, we may consider
S formally as the Nth iteration of a unitary quantum
mapping. The classical analog of S is the Poincare
scattering map, M~, introduced by Jung and Scholz in
their pioneering work on chaotic classical scattering. '

It is constructed by following classical scattering trajec-
tories from the initial conditions (I,e) to the final condi-
tions (I',e'). I is the action variable corresponding to
the quantum number i, and e is the conjugate angle. Of
prime importance is the action @(I,I') along the classi-
cal trajectory

p + oo

+(I,I') —J' (eI+rp)dr, (5)

~here r and p are the scattering coordinate and momen-
tum. (As t r t ~, the action I becomes an integral of
the motion. ) The Poincare mapping is generated by
e(I,I'),

e-ae/aI, e -—ee/aI', (6)

thus ensuring that the mapping is area preserving.
The semiclassical formula for the S matrix is given

I bv

, a(e'I')
a(eI)T S/v g 1 /e»lh

pp 2(R„t'"
where the index pp is used to label the periodic points of length N (not necessarily primitive). R~r is the residue of the
periodic orbit and N is the corresponding action (which includes also the Maslov-index contribution).

Considering N as a fictitious "time" we see that the expression for t TrS t is formally equivalent to the expression
derived by Berry ' for the two-point correlation function in the spectra of bounded Hamiltonian systems. Proceeding
now in his footprints we decompose the semiclassical expression for

t
TrS t into two sums. A diagonal sum which is

the sum of the squares of the contributions from individual periodic points and a nondiagonal sum which contains all
the interference terms. As long as N (L, the difference between actions which correspond to different orbits exceeds h.

' 1/2 ' (I) i —I/2
I8 exp —&(I,I') t' —i v'— (7)2', 88

where the summation is over all scattering trajectories (r) which contribute to the transition I I'.
To calculate powers of S we use the semiclassical expression (7) and perform the intermediate sums by the saddle-

point approximation. Because of relation (6), the saddle-point condition picks multiple-scattering trajectories which
correspond to the multiple iterates of Mp. Thus, TrS is expressed semiclassically in terms of the periodic points of
period Ã of M~,
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Hence, the contributions from the nondiagonal part will

average to zero. The contribution from the diagonal part
can be estimated by using the Hannay and Ozorio De
Almeida sum rule, adapted for the present situation
(see discussion below). The sum rule holds only if
N & N, where N* denotes the time after which the
periodic points are uniformly distributed over the entire
available phase space. Thus, for N* & N & L,
sN -N/L —l.

For N&&L, the classical periodic orbits proliferate and
action differences may become arbitrarily small. The in-
terference terms in this regime cannot be neglected. We
have given above a simple argument to show that in this

regime s~ 0. To summarize, we have
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(9)

N

F&G. 1. The Fourier coefficients of the cluster function sN
'

as a function of N for L —100. The arrow points to the value
of N where departure from the universal N dependence is ob-
served [see (9)]. Inset: The dependence of r (h) on 1/h (in
arbitrary units) as extracted from Fig. 2.

Apart from the nongeneric region N & N*, this is the
proper behavior expected for the Fourier transform of Y2
of the DOE, which displays the same characteristic tran-
sition between the regimes N (L and N & L.

Since N* is a classical quantity, independent of A, the
effects of the region N(N* on the function V2 will
show up for r ) r —L/N —1/O.

To justify the application of the classical sum rule in

the present context, we observe that it was originally de-
rived for chaotic area-preserving rnappings on a compact
volume of phase space. The only ingredients of the chao-
ticity that are used are that (a) the mapping is hyperbol-
ic, and (b) the periodic points cover it uniformly and
densely as the period becomes large. The scattering
mapping is area preserving [see (6)l and its domain is
finite since we always assume conservation of energy and
a scattering interaction of a finite range. A new feature
which characterizes the mapping Mg is that as a func-
tion of its variables it is a fractal function which is

piecewise monotonic on the complement of a Cantor set
and is thus distinguished from other types of mappings
(e.g. , the standard map) which can be expressed in terms
of simple analytical functions. This property does not
pose any difficulty as far as the requirements (a) and (b)
mentioned above are concerned.

Our analytical results will now be illustrated by very
recent numerical results obtained from the exact solution
of a two-dimensional model described in detail in Refs.
11 and 12. The model consists of a periodic array of
strong nonoverlapping spherically symmetric scattering
potentials whose centers are located on equidistant points
along the y axis in the plane. Because of the discrete
translational symmetry of the problem in the y direction,
scattering is allowed only into a finite set of Bragg direc-
tions which results in a S matrix of dimension L XL,

where L is (half) the number of allowed directions.
(L-JED/h, where D is the spacing between scatter-
ers. )

In Fig. 1 we show s~ as a function of N for L —100.
It was obtained as an ensemble average over 400 ma-
trices corresponding to energies within a range of ~ 10%
around the nominal energy E=l. The chosen energy
step (hE 0.0005) is about twice the width of the corre-
sponding S-matrix-energy autocorrelation function (see
Figs. 7 and 8 in Ref. 11). This guarantees that the ma-

trices in the ensemble are in fact statistically indepen-
dent. Figure 1 clearly exhibits the three regimes summa-
rized in (9).

Figure 2 shows the function Y2(r)(xr) for six
different values of h, with corresponding dimensions
L-20, . . . , 280. We plotted Y2(r)(zr) since this func-
tion (for the DOE) approaches unity where r ) 1, and it

amplifies the large-r region where we expect to observe
the deviations from the DOE predictions. The break
points r* are indicated by arrows. Within the uncertain-
ties of extraction of the break points, the scaling of r is
consistent with r —1/h, as is evident from the inset in

Fig. 1 ~

In summary, we would like to suggest that the results
discussed here, together with the previous findings in

Refs. 10 and 11, bring the study of fluctuations in quan-
tum chaotic scattering to the same level of detail and
depth as was already achieved for the study of fluctua-
tions in the spectrum of bounded chaotic Hamiltonian
systems. For a third class of systems, namely those
driven by periodic time-dependent perturbations, there is

accumulating evidence in support of the proposition that
their fluctuation properties also follow the predictions of
RMT. The evidence from all the three classes of
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FIG. 2. The function Y2(r)(xr) (see text) for six different
values of h '. The actual values of h ' (in arbitrary units)
for (a)-(f) are given by 6 ' 9.35, 6.45, 4.46, 3.16, 1.41, and
0.71, respectively. The points r where the numerical func-
tions deviate from the RMT prediction are marked by an ar-
row. The continuous line is the RMT prediction. The error
bars on the numerical values denote the statistical uncertainty.

systems, put together, suggests the universality of the
connection between RMT and the quantum description
of classically chaotic systems. Genuine quantum correla-
tions set a limit to the applicability of RMT, but as h

decreases, these limitations are progressively relaxed.
To the best of our knowledge, the explicit use of the

periodic orbits of the classical scattering mapping in cal-
culating spectral properties of the quantal S matrix was

presented here for the first time. Phase-space periodic
orbits were introduced in the past (see, e.g. , Refs. 9 and

27) to calculate the poles of the S matrix in the complex

energy plane. It should be emphasized, however, that for
this purpose one needs the classical orbits which corre-
spond to complex energies. Such trajectories are very

complicated, and little is known about them. Their rela-

tion to the periodic orbits of the scattering mapping, is

an open problem which deserves further study.
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