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Random-Tiling Qnasicrystal in Three Dimensions
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A three-dimensional random-tiling icosahedral quasicrystal is studied by a Monte Carlo simulation.

The hypothesis of long-range positional order in the system is confirmed through analysis of the finite-

size scaling behavior of phason fluctuations and Fourier peak intensities. By investigating the diffuse

scattering we determine the phason stiffness constants. A finite-size scaling form for the Fourier intensi-

ty near an icosahedral reciprocal wave vector is proposed.

PACS numbers: 61.50.Em, 02.70.+d, 61.42.+h, 62.20.Dc

Recently, a new series of stable icosahedral quasicrys-
tal alloys (A1CuFe, A1CuRu, etc.) has been discovered
and studied in scattering experiments. ' They were
shown to possess very sharp peaks comparable to those of
a crystalline material and exhibit no detectable peak
shifts from icosahedrally symmetric positions. Curi-
ously, in an x-ray-diffraction study of single grains of i
AlCuFe, Bancel reported a loss of scattering intensity at
a number of quasicrystal peaks as the sample was cooled
down from 700 to 600'C in a reversible manner. This
interesting observation leads one to speculate that forma-
tion of a quasicrystal phase in these materials is not sole-

ly energetic in origin. A plausible interpretation of
Bancel's finding was given by Henley and by Widom,
who argued that the high-temperature phase is a
random-tiling quasicrystal stabilized by entropy. At
lower temperatures the energy of the system, which plays
a greater role, decreases the icosahedral order and even-

tually drives the system into a crystalline state. 3

The random-tiling model was proposed earlier by
Elser and by Henley as a geometrical structure of
equilibrium quasicrystals. In this scenario, a quasicrys-
tal is viewed as a space-filling tiling where rigid tiles of
two or more distinct shapes are assembled in the absence
of matching rules, and thus differ from an ideal quasi-
periodic structure such as the Penrose tiling (PT). As a
physical model, it emphasizes the role of configurational
entropy, derived from different possibilities for packing
the tiles, in stabilizing a quasicrystal of maximal symme-

try, rather than invoking the perhaps more delicate
and demanding energy balance (e.g. , matching rules) to
force a quasiperiodic ground state. Despite the large
degree of local disorder in such a system, transfer-
matrix and Monte Carlo simulation ' studies have con-
firmed the hypothesis of quasi-long-range positional or-
der in the analogous two-dimensional (2D) random
rhombus tilings. In this respect random tilings differ
from the nonequilibrium icosahedral glass model, "' for
which only scattering peaks of nonvanishing width are
expected.

In this Letter a set of finite-size scaling forms based on
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FIG. 1. Fourier intensity of (a) random and (b) (approxi-
mant) zero-temperature ideal 3D Penrose tiling of 10336 tiles,
measured at integer values of Lq i/2» from 1 to 76 along a two-
fold axis. A diffuse line shape conforming to (8) is sketched in

(a). Peaks are indexed as in Ref. 18 throughout the paper.

a linear phason elasticity theory of three-dimensional
(3D) quasicrystals' is proposed. By numerically verify-
ing them in a Monte Carlo simulation of a random-tiling
icosahedral quasicrystal we confirm the hypothesis of
Bragg diffraction peaks in such a system. 7 A phason
Debye-Wailer factor is determined. Furthermore, we

present detailed studies of diffuse scattering in the
random-tiling model, from which two phasons stiffness
constants K|=96 and K2=59 are determined. Our data
are in good agreement with a theory of diff'use scattering
for icosahedral quasicrystals proposed by Jaric and Nel-
son. ' A comparison of the Fourier intensity along a
twofold axis in the random tiling and ideal 3D PT (ap-
proximate) of 10336 tiles is shown in Fig. l.

2390 1990 The American Physical Society



VOLUME 64, NUMBER 20 PHYSICAL REVIEW LETTERS 14 MAY 1990

where Q' trgm, e,' and Q xaam, e, are comple-

mentary components of a 6D reciprocal-lattice vector,
with m, being integers. The sum in (1) is over all N ver-

tices of the tiling. The Fourier intensity

I~(q) —= (
~ Sjv(q) ~'/N) (2)

has Bragg peaks at q Q as N ~ if the mean-square
width of phason fluctuation

2

W~ = I' 1

N ~ N r
(3)

and higher-order moments remain properly bounded in

the thermodynamic limit. Angular brackets in (2) and

(3) denote proper ensemble average over phason fluctua-

tions.
For a 3D icosahedral quasicrystal, an elastic phason

free energy can be written in terms of

h(p) fe ' 'th(r) dr,

1.e.,

F/kaT p h( —p)C(p)h(p)(2tr) d p,
where in the component form

Ci, (p) =K|
i p i

2b;, —K2[( -,
'

i p i'+2p; + r 'p;+ i

(4)

—rp 1)h;, -2p;p)], (5)

and Kl and K2 are two phason stiffness constants associ-
ated with two independent quadratic invariants of the
icosahedral symmetry group, respectively. ' ' Here i
= (J5+ 1 )/2, b;~ is the Kronecker symbol, and indices in

(5) are understood modulo 3. Assuming phason fluctua-
tions are governed by (4), the ensemble averages (2) and
(3) can be carried out in Fourier space. For an infinite
3D system (3) takes a finite value w, while the result
for (2) is given in Ref. 14,

I(q)=(2 )'&gg(Q )[b(q-Q )
Q

+-,'Q C-'(q-Q')Q ], (6)

where p is the number density of tiles and g(Q )

Consider a space-filling tiling by prolate and oblate
rhombohedra, each formed by a triplet of icosahedral
vertex vectors of unit length e, (the same set of tiles
occur in the 3D PT). The position of an arbitrary vertex
in such a tiling is given by r =P,- ~ n,e„and the in-

tegers n, specify a 6D hypercubic lattice point R = [nJ.
The phason variable h(r) =g, -~n,e, gives coordinates
of R in a 3D "perpendicular space" complementary to
the space of the tiling. Hence e, is a complementary set
of icosahedral vertex vectors of unit length. '

Using the phason variable h(r), the structure factor at
a wave vector q Q +k can be expressed as

&tv(q)=+exp(iq r) +exp[ —iQ h(r)+ik r], (1)

—=g(Q ) is the normalized Fourier intensity at a peak

Q
II

For a finite system of N tiles and linear size L under
periodic boundary conditions, there is a lower cutoff at

~ p ( =2tt/L for the Fourier-space integration. This leads
to a 1/L correction to the mean-square width

w12v =w' —a/L, (7)

x sin(Lk 1 ) sin(Lk2) sin(Lk3),

which grows to a Bragg peak as L . The matrix
C '(k) in the diffuse part is replaced by a scaling form
L2M(Lk) which satisfies limL L M(Lp) C '(p).
Thus M(p) =C '(p) for

~ p ~
&&2tr, but it crosses over

to a finite value at p 0. In particular, (8) implies a 1/L
correction to the peak intensity,

IN(Q )/N=g(Q )[1+4n L 'Q M(0)Q ]. (9)

The goal of our simulation is to verify the scaling forms
(7)-(9).

We have simulated a series of cubic approximants to
the icosahedral quasicrystal tiling under periodic bound-
ary conditions. Each approximant is related to a rational
number p/q close to the golden mean r. Taking the
edge length of rhombohedra to be 1, the total number of
tiles (or equivalently, vertices) in a cubic box of linear
size L 2(pr+q)/v'v+2 is N 4[2p +3(p+q)pq].
The best approximants correspond to (p, q) being succes-
sive Fibonacci numbers, and have an average phason
strain on the order of N

In the present simulation all tilings are assumed to
have the same energy. The basic Monte Carlo move
consists of flipping a rhombic dodecahedron formed by
two prolate and two oblate rhombohedra. It is possible
to show that (i) any tiling allowed by the boundary con-
dition may be reached from a given one through the flips,
and (ii) the detailed-balance condition may be fulfilled.
In order to study the (Monte Carlo) dynamics of phason
relaxation, averages are performed over a number of sys-
tems (300-500, except for N 43784) which evolve sto-
chastically from a given initial configuration (an approx-
imate 3D PT). The relaxation time (in unit of one trial
per site) into the steady state is proportional to L', with
z=2. Details of the simulation algorithm will be re-
ported elsewhere.

where a is a constant related to K~ and K2. ' A finite-
size scaling form of (6) can also be derived:

I~(Q +k) = (2n)'Ng(Q')

x [4(Lk)+ 2 L 'Q M(Lk)Q ], (8)

where we have assumed that all but one term in the sum
over Q are negligible at sufficiently small k q

—Q'. '

Comparing (6) with (8), we see that the b-function term
is replaced by

L @(Lk) —= (2z) (k 1 k 2k 3)
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FIG. 2. Mean-square phason fluctuation vs inverse linear
size. Error bars on the data are comparable to the size of the
plotting symbols. The straight line is a guide to the eye.

Figure 2 shows the equilibrium phason-fluctuation
data wN plotted against inverse size 1/L. Apart from the

p/q 2/1 series (open circles), where the effect of the
average phason strain appears to be significant, all data
lie approximately on a straight line, thus conforming (7).
From the 1/L scaling we conclude that w for the
infinite 3D random tiling in fact saturates to a finite
value 1.73+ 0.01 (as compared to 1.236. . . for an ideal
3D PT).

The scaled Fourier intensity IIv(Q ')/Ng(Q ) for a set
of best approximants at a number of peaks is depicted in

Fig. 3. Points corresponding to the same peak are con-
nected by a straight line. The 1/L scaling predicted by
(9) seems to be in good agreement with our data. The
slight decrease (1/L correction) in intensity and the in-
crease in phason fluctuations seen in Fig. 2 can be quali-
tatively understood as due to longer-wavelength phasons
allowed in larger systems. For each peak, extrapolating
the 1/L scale (9) to L ee yields a finite intensity

g(Q ), supporting the existence of Bragg-diffraction
peaks in the system. The numerically determined inten-
sities for the infinite system are well represented
by g(Q )=gp(Q )exp( —)Q )'/6) for )Q (

~3.4.
Here g~(Q ) is the normalized Fourier intensity of the
ideal 3D PT. '

We now turn to the diff'use scattering in the 10336-tile
system. The Fourier intensity shown in Fig. 1(a) is ob-
tained from a scan along a twofold axis q~ at integer
multiples of 2x/L. ' We note that peaks with a visible
diffuse profile have nearly identical diffuse line shape on
the semilogarithmic scale, as is expected from (8). Fig-
ure 4 is a plot of the scaled diffuse intensity LIN(q)/
4x'Ng(Q ) ~Q ~

along this axis, centered at three
peaks, (111001),(221001), and (332002), together with
the data for three other system sizes. Contribution from
the @ term in (8) has been removed. A reasonably good

FIG. 3. Scaled peak intensity vs linear size.
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FIG. 4. A scaling plot of diffuse profile along a twofold axis
centered at three peaks, (111001), (221001), and (332002).
The lines are computed using fitted phason stiffness constants.

agreement between the simulation data and the scaling
form (8) is achieved.

Measured diffuse intensity data around four major
peaks with a displacement wave vector k are listed in the
top of Table I. Error bars on the data are about 10% of
their value. Assuming the asymptotic form M=C
holds already at these spots, we can check (8) and deter-
mine the phason stiffness constants. For k considered
here C(k) is a diagonal matrix. A two-parameter linear
least-squares fit is performed using the three data points
associated with the peak (221001). This yields KI =96
and %2=59. The bottom of Table I lists a set of com-
puted diff'use intensities using (8) and the above deter-
mined values of stiffness constants and peak intensities.
We see an agreement of better than 10% for most spots.
The two lines in Fig. 4 are computed in the same way.

In conclusion, we have presented a detailed study of
phason fluctuations and Fourier intensities in a 3D
random-tiling icosahedral quasicrystal. By verifying the
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TABLE 1. Measured (1V 10336) and computed diffuse

scattering data.
D. E. Wolf.

Lk/2n (221001)
Measured

(211111) (111000) (322111)

(100)
(010)
(001)

13.8
26.2
6.15

14.3
7.4
6.7

5.5
10.8
17.9

6.6
10.0
20.4

Lk/2tr (221001)
Computed

(211111) (111000) (322111)

(100)
(010)
(001)

13.8
26.5
6.14

14.9
7.6
7.6

5.2
1 1.3
17.4

6.3
9.3

17.4

1/L scaling forms we confirmed the hypothesis of long-
range positional order in the system. The diffuse scatter-
ing data were found to be in good agreement with a
theory of Jaric and Nelson for icosahedral quasicrystals,
and allowed us to determine the phason stiffness con-
stants. A finite-size scaling form for the Fourier intensi-

ty near an icosahedral reciprocal-lattice vector is pro-
posed.

In a more realistic model for experimental quasicrys-
tals, one needs to consider the local energetics of atomic
clusters (which the rigid tiles are supposed to represent)
in breaking the perfect degeneracy of all tilings assumed
here. In the case when such energetics lead to a quasi-
periodic ground state, one expects an increase in quasi-
crystal peak intensity and a decrease in diA'use scattering
as the temperature is lowered. Interestingly, it has been
argued that the linear phason elasticity theory, Eq. (4),
may not apply to a tiling model with a matching-rule en-

ergy at zero and sufftciently low temperatures. 2o 2' Thus
the low-temperature phase of such a model may exhibit
a different dynamical behavior and diffuse scattering
pattern than the random-tiling model discussed in this
paper.

A perhaps more interesting case is when the local
energetics of tiles actually favors a crystalline state. One
then expects a first-order transition between a quasicrys-
tal and a crystal phase similar to the facetting transition
of a solid surface. It would be interesting to study such a
transition in light of recent experiments on the i-A1CuFe
system.
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