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Sheared Boundary Layers in Turbulent Rayleigh-Benard Convection
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Thermal boundary layers in turbulent Rayleigh-Benard convection are studied experimentally using a
novel system in which the convecting fluid is sheared from below with a flowing layer of mercury. Oscil-
latory shear substantially alters the spatial structure and frequency of the eruptions, with minimal eA'ect

on the heat flux ( & 5%). The temperature probability distribution function (PDF) just above the lower
boundary layer changes from Gaussian to exponential, without significant changes in the interior PDF.
Implications for theories of "hard" turbulence are discussed.

PACS numbers: 47.25.Qv, 47.20.Bp, 47.25.Ae, 92.60.Fm

The role of thermal or viscous boundary layers in tur-
bulent flows is a problem of fundamental interest. Inter-
mittent bursts from boundary layers produce coherent
structures that propagate through the bulk, determining
the statistical properties of the flow. In addition, the
transport of heat and momentum across the system is

often limited by the boundary layers (BL's). For these
reasons, much can be learned about turbulent flows by
studying their properties. This is especially true for tur-
bulent Rayleigh-Benard (RB) convection, in which the
temperature gradient is concentrated in thin, stagnant
(but unstable) thermal BL's near the upper and lower
surfaces. This system has attracted much attention re-

cently because of the discovery of scaling laws in the
heat flux and temperature statistics over many orders of
magnitude of the Rayleigh number R (the dimensionless
temperature difference across the fluid). Motions arising
from boundary-layer eruptions are also important in un-

derstanding convection in the atmosphere and oceans.
Most theories of heat transport in turbulent RB con-

vection assume marginal stability of the thermal BL's,
which grow in thickness to an average value 6 where

they become unstable to thermal eruptions. Early inves-

tigators proposed that, for large R, 8' is independent of
the height of the convection cell and properties of the in-

terior flow. The temperature gradient was assumed con-
centrated entirely in the BL's, and as a result the Nusselt
number Nu (the nondimensional heat flux) should grow
as Rp, with P= —,'. Experiments have found that P= —',

at large R, prompting the hypothesis ' that shearing
"winds" from the interior increase 6', lowering Nu. In
addition, instabilities of the BL s to wavelike propagation
of thermal disturbances were also suggested to explain
the observed transition from "soft" to "hard" turbulence,
a transition characterized by a change in the tempera-
ture probability distribution function (PDF) at the
center of the cell from Gaussian to exponential.

In this Letter, we describe experimental studies of BL
dynamics using a novel approach in which the convecting
fluid is sheared from below with a layer of mercury that
acts as a constant-temperature, moving boundary. The
behavior of the lower BL is controlled primarily by in-

teractions with this "artificial wind" from below. Mea-
surements of Nu and of the spacing and frequency of the
BL eruptions when sheared externally are contrasted
with those for the normal (unsheared) case. The effects
of the shear on the temperature PDF's in the interior are
also examined.

A diagram of the convection apparatus is shown in

Fig. 1, along with a sketch of the driving mechanism for
the mercury flow. The convecting fluid is water at tem-
peratures between 30 and 40'C (Prandtl number Pr
=25) in enclosures of horizontal size 6.35X6.35 cm,
and depths 4.0 and 9.0 cm. For these experiments, R is
varied between 10 and 10 . A layer of mercury 7 mm
deep forms the bottom of the convection cell. Local
measurements of the temperatures at two locations in the
fluid are made with small thermister probes 0.5 mm in
diameter. One probe is located 2 to 3 mm above the
mercury-water interface, centered laterally, and the oth-
er is located at the midheight of the cell. A thin, lam-
inated copper plate with a resistive heater separates the
mercury from a configuration of permanent magnets
(neodymium iron boron). Measurements of the heat flux
are determined from the power required to keep the mer-
cury at a constant temperature. The heater and magnets
are surrounded from below by insulation and an alumi-
num block that is separately controlled at the tempera-
ture of the mercury to prevent heat leakage. In addition,
the sides of the cell are well insulated.
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FICJ. 1. (a) A schematic diagram of convection apparatus,
showing temperature probes in the water layer. The sapphire
window and mercury are maintained at constant temperatures.
(b) Exploded view of magnetohydrodynamic forcing of a vorti-
cal flow in the mercury layer.
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A flow is induced in the mercury using a magnetohy-
drodynamic technique [Fig. 1(b)] in order to shear the
lower BL. A uniform electrical current passing horizon-
tally through the mercury interacts with an alternating
vertical magnetic field imposed by magnets located
below the mercury. These interactions produce vortex
flows in the mercury with velocities that are continuously
varied by changing the current, and spatial structures
that can be altered by changing the magnet config-
uration. Except where otherwise stated, the shearing
flow is a single vortex whose characteristic speed (rms) is
in the range 0-6 mm/s. These velocities should be com-
pared to the typical rms horizontal convective velocities
just above the lower BL, which range up to approximate-
ly 0.8 mm/s at R =10 . The mercury flow is made to
oscillate by employing a bipolar, square-wave current
with frequency 0.20 Hz that is chosen to confine the
shear to the vicinity of the BL. (This is necessary to dis-
tinguish the efl'ects of shear on the BL from those on the
interior flow. ) At this frequency, the imposed shear has
a characteristic thickness of 1.9 mm, close to the typical
BL thickness 8 (2. 1 mm at R =5.7X10, for example).
Secondary flows due to unbalanced centrifugal forces
near the boundary are negligible with this forcing con-
figuration, so the induced flows in the convecting fluid

are predominantly horizontal.
Bursting of the BL is studied with a technique that al-

lows direct visualization of the temperature field. Ther-
mochromic liquid-crystal (TLC) microspheres are sus-

pended in the convecting fluid. A thin, vertical section
of the fluid is illuminated with a sheet of white light, and
the resulting scattered light is imaged from the side.
The color and intensity of the scattered light vary with
the temperature of the fluid. In addition, observations of
the movements of the microspheres provide information
about the velocity field. A color video camera allows the
bursting of the lower thermal boundary layer and the re-
sulting interior temperature distribution to be analyzed.
An example of a TLC image is shown in Fig. 2.

Sequences of enhanced TLC images of eruptions of
the lower BL are shown in Fig. 3. In the unsheared case
[Fig. 3(a)], recirculation zones form at the base of each
developing burst, pulling hot fluid laterally from sur-
rounding areas of the BL and increasing the heat content
of the plume. These recirculation zones also cause sep-
arate plumes to aggregate, as can be seen in Fig. 3(a).
The resulting eruptions have lateral dimensions up to 4
times larger than the thickness of the BL.

In the sheared case [Fig. 3(b)], the movement of hot
fluid in and near the BL is determined primarily by the
external forcing and is less influenced by recirculation.
Regions of hot fluid remain isolated and burst separately,
rather than aggregating. As a result, the eruptions are
more frequent, but the resulting thermals are small
(comparable to the boundary-layer thickness), and their
heat content is less. This behavior is reflected in power
spectra of temperature fluctuations measured by the
lower probe. The average fluctuation frequency (charac-

FIG. 2. Thermochromic liquid-crystal imaging of a vertical section of the convection cell (except for the top —,
'

in. ) at
& =8.1 x l0, d 4.0 cm. The lower boundary layer and warm eruptions are blue; red-brown regions are cooler.
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FIG. 4. Dependence of heat flux on rms forcing velocity U,
.

R -4.6 x 10' (a), 5.7 x 10' (&), I.1 x 10' (o).
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terized by the first moment of the power spectrum) in-

creases monotonically by a factor of 3-4 over the range
of forcing velocities studied. It is clear from these obser-
vations that external (and internal) shearing winds

influence the organization of thermal eruptions from the
BL. However, their effect on the heat flux is surprisingly
small (Fig. 4). The Nusselt number increases by up to
5% in the presence of oscillating shear flows, independent
of R.

Measurements of temperature PDF's in the unsheared
convective flow are presented in Figs. 5(a) and 5(b).
The scaled PDF's just above the lower BL [Fig. 5(a)]
are approximately Gaussian and are independent of R
over the range studied, as indicated by the diff'erent sym-

bols. The PDF's in the center of the cell [Fig. 5(b)], on
the other hand, depend on R. They are exponential for
R & 3 x 10, the regime of hard turbulence. Below R
=10, the center PDF's are mixed, having exponential
peaks but Gaussian tails. This change in the behavior of
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FIG. 3. Eruptions of the lower boundary layer for R 1.1

x10' and d 9.0 cm. In these images, the light regions (actu-

ally blue) correspond to warm fiuid. The full width of the cell

is shown (but not the full height). (a) Unsheared convection:

Two hot sections of the boundary layer aggregate while erupt-

ing (see arrows). (b) Convection sheared by an oscillating

mercury flow of rms velocity 6 mmls. Sections of the boundary

layer erupt separately, increasing the frequency of bursting.
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FIG. 5. Temperature probability distribution functions:
R 4.9x106 (o), 5.7x107 (&), 1.1 x10s (o). The data are
scaled by subtracting the mean temperature (T) and dividing

by the rms temperature fluctuations T, , (a) Unsheared,
lower probe; (b) unsheared, center probe; (c) sheared (6
mm/s), lower probe; (d) sheared, center probe.
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the PDF's marks a transition between turbulent convec-
tive regimes, similar to the soft-to-hard transition
observed in Ref. 3. However, these "soft-turbulence"
PDF's are fundamentally different from those of Ref. 3
at comparable R, which do not have exponential peaks.
Mixed PDF's have also been observed in numerical
simulations of soft turbulence. ' Experimental tests in-

dicate that the PDF's for R below 10 are purely Gauss-
ian when the aspect ratio is sufficiently small. (We
discovered this fact by inserting Plexiglas spacers in our
shallow cell to reduce its aspect ratio to that of the taller
one, 0.7.)

If the lower BL is sheared externally, the PDF's at the
lower probe change from Gaussian to exponential with

asymmetrical tails [Fig. 5(c)l. These changes in the
lower PDF's are probably due to external shear prevent-

ing the organization of large coherent plumes, as seen in

Fig. 3. (Changes in PDF's of this nature have been pre-
dicted in a recent theory" that relates them to the corre-
lations between temperature and vertical velocity. ) It is

interesting that these lower PDF's, like those in the
unsheared case, are independent of R. Whereas the
scaled PDF's at the lower probe change dramatically in

response to the external forcing, those in the center
remain constant [Fig. 5(d)], with the exception of a
slight change in the positive-temperature tail for R 4.9
x 106. (There are small shifts to higher (T) in the uns

caled PDF's, but the standard deviation of temperature
fluctuations remains constant. )

In conclusion, we have observed that the heat flux

is not substantially affected by major shear-induced
changes in the boundary-layer dynamics, as manifested
in local power spectra, temperature probability distribu-
tion functions, and visual observations of the tempera-
ture field. It should be emphasized, however, that the
heat flux is robust only if the forcing winds are strictly
horizontal and limited to the vicinity of the BL. Sub-
stantial increases in Nu (up to 70%) are observed if the
BL is perturbed by much more energetic forcing that
produces secondary flows with significant vertical com-
ponents. ' Decreases in Nu, on the other hand, are ob-
served in previous experiments" and simulations'4 on

thermally stratified plane Couette flow, where imposed
linear shears are not confined to the BL and appear to
disrupt large-scale thermal structures in the interior.

Our results appear to be inconsistent with the hy-

pothesis that shear-induced stabilization of the BL's (i.e.,
horizontal interior winds increasing the thickness b at
which the BL erupts) is responsible for the value of P
(=- —,

' ) observed at large R. Perhaps vigorous winds at
large R cause the interior temperature distribution not to
be strictly isothermal, as in Refs. 13 and 14, thus reduc-
ing the heat flux. Alternatively, several authors have

proposed recently that b is governed not by marginal sta-
bility but by a balance between diffusive heat flux into
and advective heat flux out of the BL. ' It is possible to
explain the observed scaling behavior in this manner.

The absence of change in the lower PDF at the soft-
to-hard transition suggests that a global analysis of the
convecting layer is necessary to understand the transi-
tion. Visual observations using TLC imaging show that
in the soft-turbulence regime the thermal plumes fre-
quently span the full height of the cell (see Fig. 2),
whereas at higher R they are broken into smaller struc-
tures before traversing the cell. These observations,
along with those of the sensitivity of the center PDF's to
aspect ratio at lower R (but not to BL shear), suggest
that changes in the organization and coherence of
thermal structures in the interior are a dominant feature
of the soft-to-hard transition. Quantitative studies of the
full temperature field may lead to a deeper understand-
ing of these issues and are in progress.
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