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Convection at Finite Rayleigh Numbers in Large-Aspect-Ratio Containers
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The phase diffusion and mean drift equations which describe the behavior of a convection pattern are
derived, a step which is essential for obtaining quantitative comparisons between theory and experiment.
The theory recovers the boundaries of the Busse balloon, agrees closely with the dominant wave numbers
observed by Heutmaker and Gollub [Phys. Rev. A 35, 242 (1987)I and Steinberg, Ahlers, and Cannell
[Phys. Scr. 32, 534 (1985)I in natural and target patterns, predicts a new instability which is important
in facilitating wave-number adjustment in circular target patterns and in initiating time dependence, and
predicts Rayleigh numbers at which loss of spatial correlation due to global defect nucleation will occur.

PACS numbers: 47.25.Qv

Nonlinear systems, driven far from equilibrium by an
external stress, can undergo a series of symmetry-
breaking bifurcations leading to spatiotemporal patterns
which generally become more complicated as the applied
stress is increased. Such patterns are common in nature,
and can be observed from weather maps to the surface of
the saguaro cactus. In particular, Rayleigh-Benard con-
vection in large-aspect-ratio containers has long been the
canonical paradigm for studying their behavior. In this
Letter, we provide, for the first time in the literature, a
self-consistent theory for a dynamical description of such
convection patterns at finite amplitudes by deriving
directly from the Navier-Stokes and heat equations the
phase diffusion equation for

k X(X,Y) -e—"(x,y), T=e' "',

the pattern wave vector, and the mean drift equation for
V(X,T) from which the incan drift horizontal velocity
(which is a linear combination of V and slow gradients
of k with z-dependent coefficients) can be calculated.
Here d denotes the depth of the container, L its horizon-
tal size, and tc is the kinematic thermometric conductivi-
ty. The mean drift velocity field is driven by the pattern
curvature and intensity gradients of the wave vector and
in turn it advects and distorts the constant-phase con-
tours. The small parameter in our theory is e=d/L, the
inverse aspect ratio. It should be sufficiently small so that
the band of stable wave numbers is densely populated.
The derivation is valid in regions away from defects such
as dislocations, disclinations, and foci where the macro-
scopic order parameters k=Ve and V=Vxyz are the
gradient and curl of a single-valued phase and stream
function, respectively. They vary by order 1 over dis-
tances of the container diameter L and over times of the
order of the horizontal diffusion time L /tc.

The method by which the phase diA'usion and mean
drift equations are derived follows closely the ideas of
Cross and Newell' who, in the early 1980s, derived the
phase diA'usion equation from a variety of model micro-
scopic equations and, guided by the hand of experience

and low-amplitude calculations, suggested the form of
the mean drift equation. The idea is to look for slowly
modulated finite-amplitude roll solutions to the govern-
ing equations (the Navier-Stokes and heat equations us-

ing the Oberbeck-Boussinesq approximation with rigid-
rigid boundary conditions), whose existence and linear
stability properties have been found by Busse and col-
leagues. The symmetry in the vertical direction about
the midlayer means that rolls are the dominant plan-
form, although the theory can equally well handle the
slow modulation of hexagonal configurations (quasicrys-
tals). Because the slowly varying roll is no longer an ex-
act solution of the equations, corrections to the velocity
(u, v, w), temperature (p), and pressure (p) fields

v(u, v, w, y,p) = f(8=e '8(X, Y, T),z,A(X, Y, T))

+EV]+E' V2+ ' ' '
)

where f is 2tt periodic in 8 and k=Vx8 (almost every-
where) must be sought. The algebraic equation for the
amplitude A is determined by demanding that f is 2n
periodic in 8. The phase diffusion and mean drift equa-
tions for k=V8 and V Vxtltz (contained in v~) arise
as solvability conditions when one solves for v~ and vz.
These conditions are necessary because of the singular
nature of the equations Mv~ =I,, j=1,2 where M is the
operator obtained by linearizing the Navier-Stokes and
heat equations about v f, and result from the sym-
metries 8f/88 (translation of phase) and Bf/|lp (one can
add an arbitrary constant p, to the pressure). The addi-
tion of the slowly varying pressure field p, (X,T) is
necessary in order to ensure that the induced mean drift
field satisfies mass conservation.

The key difficulty (and the novelty) in the derivation is
that the phase diffusion equation arises as a solvability
condition at order t. and the mean drift equation at order

Therefore one has to solve, after first removing the
solvability condition, the singular equations for v~ exact-
ly retaining, in algebraic form, the dependence of v~ on
the wave vector k. No approximation obtained by
averaging the momentum equations over 0 and z will
suffice because the vertical (z) structure of the induced
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mean drift fields is not trivial and, especially for low Prandtl numbers, is not well approximated by a Poiseuille-like

profile. The key mathematical step in obtaining the generalized inverse of the singular equation for v] is the use of a
singular-valued decomposition (SVD) of the matrix which represents M in an appropriate basis. SVD is ideally suited

for our purposes because vectors are automatically decomposed into the range of the singular operator and the null

space of its adjoint, and only poor conditioning of the nonsingular part requires further attention. The methods we use

should have wide applicability.
The amplitude, phase diffusion, and mean drift equations are

Q(A, k, R)+O(e) =0,

8T+p(k)V V8+ V kB(k)+O(e) =0,1.(k)
(2)

A

i Vxka(k)(kxVy) i —V kp(k)(k Vy) =i Vx —kV kA — V kB,(k) —V k[VxkB (k)1 z+O(e), (3)..(k)

where k=V8, k=k/k, V=Vx vari, and the quantities

p(k), 8(k), r(k), a(k), P(k), A(k), 8,(k), r, (k), and

Bp(k) are all functions of k which are explicitly calculat-
ed and of which only two can be eliminated through
combination. The function Q(A, k, R) is the algebraic
relation through which the amplitude A is slaved to the
wave number k. The O(e) correction term is equally im-

portant at singularities (dislocations, foci) at which

points the amplitude A becomes an active order parame-
ter. The mean drift is driven by the slow gradients (or-
der L ') of the Reynolds stresses of the short scale, lo-

cally periodic pattern which are nonzero when the pat-
tern curvature is not constant everywhere. The fact that
it cannot be written in terms of local phase gradients is a
consequence of incompressibility. It plays a similar role
to the long-wave ion acoustic field which is driven by the
ponderomotive force generated by gradients in the inten-

sity of short-scale Langmuir waves in plasmasi and to
the large-scale pressure field which must be introduced
for the description of two-dimensional gravity surface
waves in a finite-depth inviscid fluid.

The equations have the properties that they are
translationally and rotationally invariant and also Galile-
an invariant even though the original rigid boundary-
value problem is not. At infinite Prandtl numbers, no
mean flow is induced [the forcing terms in (3) either
vanish or cancel], and (2), in coordinates parallel (X)
and perpendicular (Y) to k, is 8T —Di(k)8~~ —D~(k)
x8~=0, the Pomeau-Manneville5 phase equation for
which the parallel and perpendicular diffusion coef-
ficients Di= —(I/r)(d/dk)kB and D~ = —(1/r)8 are
explicitly calculated. The loci D!!=0 and D& =0 are the
Eckhaus and zigzag stability boundaries, respectively.
Curved rolls patches select the wave number ka(R, P),
the zero of 8(k), which, in the infinite Prandtl number
limit, is at the zigzag stability border where the rolls lose
their resistance to lateral bending. As a consequence, an
order d/v e =ddL length scale is introduced in this
direction and higher-order correction terms proportional
to 8~~ in (2) become equally important as V. kB.
The consequence is that at large P, the patterns take at
least a time (L/d)L /rc to relax to equilibrium. As

! R R„ the critical Rayleigh number, the amplitude be-
comes small; the operator M has an additional null vec-
tor because one is effectively linearizing about the zero
solution. The amplitude 3 becomes an active order pa-
rameter satisfying a partial differential equation rather
than being passively slaved to k as in (1). When this
equation is combined with the phase diffusion equation
in the combination W A xexp(i8e '), one obtains the
equation of Newell and Whitehead and Segel for low-
amplitude convection.

At finite Prandtl numbers, the effect of mean drift is

dramatic. It affects in a significant way the boundaries
of instability (Busse balloon ) of the straight parallel roll
solution 8=kX, y 0 [see Figs. 1(a)-1(c)] by shifting
the zigzag stability boundary to lower k and turning the
one-dimensional Eckhaus instability into the two-dimen-

sional skew varicose instability the finite-amplitude
consequence of which is the generation of dislocation
pairs. Our theory is in agreement with that of Busse
and has the advantage that we can follow the skew vari-
cose instability into the finite-amplitude regime. The
presence of mean drift can also balance wave-number
diffusion r 'V kB so that stationary patterns no longer
have to relax to ks. Nevertheless, because of the bound-

ary constraints, natural convection patterns in cylindrical
and rectangular geometries consist of almost circular
patches whose center of curvature (called foci) are at-
tracted to the sidewall. Our calculated ks agrees with

the wave number of maximum power at several Rayleigh
numbers in the wave-number distributions found by
Heutmaker and Gollub for natural convection in a cylin-
drical container of water with P =2.5 [see Fig. 1(b)]. It
also agrees with the results of Steinberg, Ahlers, and
Cannell for circular target patterns [see Fig. 1(a)] and
with the theoretical calculations of Buell and Caton
made for exactly circular rolls.

Because almost circular patches are the dominant
feature in natural convection, the stability of the circular
roll patch 8=kqr, @=0 is relevant. We find a new in-

stability which we call the focus instability. It breaks the
axisymmetric symmetry of the circular roll pattern at a
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state until it reaches a Rayleigh number of another tran-
sition.

In natural patterns, there are several mechanisms

through which roll compression sufficient to nucleate a
dislocation pair occurs. At low Prandtl numbers, where

the onset of time dependence occurs close to the onset of
convection, boundary forcing, as described by Croquette,
Le Gal, and Pocheau, " is important because a small

change in Rayleigh number leads to a large change in

roll curvature from nearly straight rolls which intersect
the sidewall at an angle far from 90' to curved rolls

whose axes are perpendicular to the boundary. This
causes the rolls in the center of the container to be
compressed. For low to moderate Prandtl numbers, on

the other hand, the onset of time dependence occurs at
Rayleigh numbers far from threshold at which values the

boundary conditions force the pattern to consist of al-

most circular patches and two mechanisms for a roll

compression sufficient to trigger the skew-varicose insta-

bility are important. First is the focus instability. The
Rayleigh number must be sufficiently large so that it

exceeds the critical value for the instability or else be
close enough so that deformations from the circular
state, which are forced on the pattern because kafka
everywhere, and the corresponding mean flow are not

severely inhibited. Second, the amplitude becomes an

active order parameter at the focus and work on model

equations reported in Ref. 10 shows that for moderate
values of e (as is the case in these experiments), a sig-
nificant part of the mean flow can be driven by ampli-
tude gradients. For the range of Rayleigh numbers for
which these scenarios are operative, the pattern remains

spatially ordered and the dynamics low dimensional. For
still larger Rayleigh numbers, the locus of the maximum

ka of the wave-number distribution will intersect the
skew-varicose boundary (at 7R„2R„and -R, for
P =2.5, 0.7, and 0.1, respectively) at which point one ex-
pects many defects to be nucleated. Spatial correlations
will be lost and the spatial order will disappear.

A crucial ingredient for a complete macroscopic field-

particle theory is the inclusion of a component which can
handle the nucleation, annihilation, and motion of parti-
clelike defect singularities. As a particular example,
consider the dislocations which are nucleated as the re-
sult of a skew-varicose instability of straight parallel
rolls. The induced mean flow acts to enhance the neck-

ing of the phase contours and locally the wave number k
increases until it approaches the right border of the mar-

ginal stability boundary. At this point the amplitude be-
comes small and a weakly nonlinear version of (1)-(3),
which preserves rotational invariance and includes the
amplitude as an active order parameter satisfying a par-

tial differential equation instead of (1), obtains. In con-
trast to the somewhat arbitrary introduction of an addi-
tional gauge field, ' which has no physical origin in the
hydrodynamic context and does not describe either the
nucleation or annihilation of defects, the addition of the
amplitude as an extra active order parameter near de-
fects can be justified by rigorous asymptotics, has a con-
crete physical interpretation, and it can be shown that
the polar combination of amplitude and phase satisfies
an equation which has vortexlike defect solutions. A
description of these new ideas and the matching between
solutions in the outer region described by (1)-(3) and in

the defect core will be given elsewhere.
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