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We show how to characterize a strange attractor by a set of integers. These are extracted from the
chaotic time-series data by first reconstructing the low-period orbits and then determining the template,
or knot holder, which supports all periodic orbits embedded in the strange attractor, and the strange at-
tractor itself. The template is identified by a set of integers which therefore characterize the strange at-
tractor. This identification is explicitly demonstrated for the Pirogon using a relatively small data set
(5000 points}.

PACS numbers: 05.45.+b

Two general approaches have been applied to the des-

cription of strange attractors. The metric approach'
depends on dynamical information and the topological
approach " is based on the properties of periodic orbits
which are embedded in the strange attractor. Metric
properties provide information about expansion rates and
local structure of the strange attractor which remains in-

variant under coordinate-system changes but which de-
pends on control parameters. Topological indices pro-
vide information about the organization of the strange
attractor which is independent of coordinate-system
changes and which also remains invariant under
control-parameter variation.

In the first approach, time-series data are used to com-
pute metric invariants such as fractal dimension, metric
entropy, the Lyapunov exponent, and the spectrum
of singularities, f(tt). These are averaged quantities
sampled over the entire strange attractor. They are dif-
ficult to compute and require large data sets. They re-
turn relatively little information for the amount of com-
putational effort invested. For example, computation of
fractal dimension is typically done by embedding the
data in a sequence of spaces of increasing dimension, us-

ing a box-counting algorithm depending on some small
distance e, and looking for stable limits as e decreases
and the embedding dimension increases. Convergence is

often problematic. ' The result of the calculation is a
real number with larger or smaller error bars that does
not say much about "how to model the dynamics. "'

In the topological approach " the goal is to deter-
mine how the unstable periodic orbits, which are embed-
ded in the strange attractor, are intertwined. " Since
periodic orbits are dense in a hyperbolic strange attrac-
tor, ' knowledge of their linking properties severely con-
strains the topology of the strange attractor.

In the completely hyperbolic limit all periodic orbits
are described by the symbolic dynamics on a complete
n-ary tree. Flows in which a horseshoe (annulus) map is

suspended have periodic orbits described by a complete
binary (ternary) tree. As a control parameter is

changed, the unstable periodic orbits are annihilated

("pruned" ). The strange attractor is described by the
spectrum and symbolic dynamics of the remaining
periodic orbits and by their linking properties. The or-
ganization of the remaining orbits is not changed by the
pruning process. In addition, there is evidence of topo-
logical universality in this pruning process. '

The organization of the unstable periodic orbits em-
bedded in the strange attractor is described by their rela-
tive rotation rates and linking numbers. ' ' The relative
rotation rate of two periodic orbits is the average number
of times one orbit rotates about the other per period.
These topological indices are computed for all pairs of
periodic orbits which can be reconstructed from the
chaotic time-series data using the method of close re-
turns. ' This matrix of rational fractions is then com-
pared with tables of relative rotation rates for strange at-
tractors generated from known mechanisms (Smale hor-
seshoe, ' ' annulus map, ' and Lorenz flow '). This
serves to identify the topology of the strange attractor.
There is, in addition, predictive capability. Once the
mechanism responsible for creating the strange attractor
has been identified, the relative rotation rates for all
pairs of periodic orbits can be computed. These must
agree with the relative rotation rates for any additional
orbits extracted from the time-series data. If not, the
identification is incorrect. Thus the topological classi-
fication of a strange attractor may be shown invalid, a
feature notably absent from the metric characterization
of strange attractors.

The computation of relative rotation rates proceeds al-
gorithmically once the template, ' or knot holder,
which is responsible for the generation of a hyperbolic
strange attractor, has been identified. A template is a
branched surface which is particularly convenient for
visualizing flows in a dynamical system. Templates for
the Smale horseshoe, the Lorenz flow, the Pirogon, and
the Smale horseshoe with a global torsion ' of + 1 are
shown in Fig. 1. It is useful to describe templates alge-
braically. Two pieces of information are required for
this description. The first is an nxn matrix, where n is
the number of components of the template, or branches
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FIG. 1. Templates are shown for four flows. Beneath each template is its algebraic representation, consisting of the template ma-
trix and the organization of the template components. (a) Smale horseshoe; (b) Lorenz flow, showing equivalence with the more fa-
miliar Lorenz mask; (c) Pirogon; and (d) Smale horseshoe with global torsion of +1. The flows (c) and (d) are topologically
equivalent.

in the branched manifold. The second piece of informa-
tion determines the order in which the branches are
reconnected at the bottom of the template.

The diagonal elements of the template matrix describe
the local torsion of the corresponding branch of the tem-
plate, measured in units of x. An even (odd) matrix ele-
ment indicates an orientation-preserving (-reversing)
branch. The diagonal matrix elements also describe the
local torsion of the single period-one orbit embedded in

each branch. The off-diagonal elements of the template
matrix are (twice) the linking numbers of the period-one

orbits embedded in the corresponding branches. A 1 xn
array identifies the order (from back to front) in which
the branches are glued together. The template matrix
and layer-organization information are shown below the
four templates in Fig. l.

The relative rotation rates can be computed from the
template matrix and layer-organization information.
Conversely, the template matrix can be reconstructed
from the relative rotation rates of the period-one orbits,
and the layer organization can be determined from the
relative rotation rates of some of the period-two orbits.
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This suggests that the template itself can be reconstruct-

ed from the chaotic time-series data by extracting only

the period-one and period-two orbits. The integers of the

template matrix and the layer-organization information

then characterize the topological structure of the strange
attractor. Further, this identification can be confirmed

or invalidated by pulling higher-period orbits out of the

chaotic time-series data and comparing their relative ro-

tation rates with those computed from the template.
We tested these ideas on a chaotic time series generat-

ed by the Pirogon, one of the laboratories for testing

topological ideas in nonlinear dynamics,

x"+(4bx —2a)x'+bx (bx —2a)+(a +to )x

Vp b(t jTE )—(1)
j~ —oo

for a =co b/10=1. 57079, V~ = —", , and Tq 2.61. A

small sample of 5000 data points in the variables x and

x'=dx/dt was collected. Orbits of low period were

reconstructed from the time-series data.
Two period-one orbits and one period-two orbit were

initially reconstructed. The strange attractor and the

three reconstructed orbits are shown in Fig. 2. The link-

ing number of the period-one orbits was computed
(L= 1) giving the off'-diagonal elements of the template
matrix. The local torsion for each period-one orbit was

determined by computing how each pair of strange-
attractor segments near the period-one orbit wound

around each other. For one orbit all nearby segments
linked once (regular saddle), for the other orbit all pairs
linked —, times (flip saddle). The corresponding diago-

nal matrix elements are 2 and 1. The period-two orbit

was used to distinguish the two folding possibilities. The

one identified is compatible with continuity of the flow

over the branched manifold.
To verify this identification we extracted some period-

three and period-four orbits from the chaotic time-series
data. Their relative rotation rates with respect to the
previously reconstructed orbits and also to each other
were then determined and compared with those predicted
using the template matrix constructed above [Fig. 1(c)].
There were no discrepancies.

We should point out that the Pirogon template is iden-

tical to the template for the Smale horseshoe with a full

twist (global torsion of +1). Thus, flows on the two
templates are very similar —indistinguishable in the
Poincare section —but the strange attractors cannot be
continuously deformed into each other.

As a second test of this procedure, we investigated the
strange attractor generated by the antisymmetrically
kicked Pirogon,

x"+(4bx —2a)x'+bx (bx —2a)+(a +to )x

= g V, (-[)&S(r ATE/2) -(2)
j~ —oo

for a =to =b/10=1.57079, VE = —", , and TF =4.6535.
We found four orbits of period one and six of period two.
The template matrix and layer information constructed
from these orbits are shown in Fig. 3. The template as-
sociated with this matrix and layer-organization infor-
mation is also shown in Fig. 3. The correctness of this
template and its algebraic representation was confirmed
in three ways.
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FIG. 2. (a) The strange attractor for the symmetrically
kicked Pirogon [Eq. (1)l with (h) a period-two and (c),(d) two

period-one orbits reconstructed from the chaotic time series.
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FIG. 3. Four-component template for the antisymmetrically

kicked Pirogon [Eq. (2)] which is reconstructed from the
chaotic time series and its algebraic representation.
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(i) Higher-period orbits were extracted from the
chaotic time-series data, their relative rotation rates were
computed and compared with those determined using
this template. There were no discrepancies.

(ii) The template Pz for the antisymmetrically kicked
Pirogon is related to the template for the symmetrically
kicked Pirogon Ps by P~ =(—InPs), where Io de-
scribes a single-component template with a half twist.
The template ( —I&P&)*( InP—s) was drawn by hand
and is topologically equivalent to that shown in Fig. 3.

(iii) We constructed the template matrix for Pz by
concatenating the template matrices Pq and Io
( In Ps—), and then concatenating this template matrix
with itself: ( —IrjPs) ( —In Pq). The resulting tem-

plate matrix and layer-organization information are
identical to those extracted from the data.

We have described and tested a procedure for identify-
ing the topology of a strange attractor. The identi-
fication is made in terms of a set of integers. These are
the elements of the template matrix and the layer-
organization information. The parity of the diagonal
elements of this matrix define the return map; the
remaining elements are properties of the flow. These in-

tegers can be extracted from the period-one and period-
two orbits reconstructed from a relatively small data set,
5000 points in the present case. The template serves to
model the qualitative dynamics of the system. The
identification can be confirmed or invalidated by investi-

gating orbits of higher period reconstructed from the
time-series data.
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