Amar and Family Reply: We agree with the explanation proposed in the preceding Comments^{1,2} for the logarithmic behavior observed in our model³ at a critical value of the parameter κ , $\kappa_c \approx 0.62$. We have independently, in collaboration with Huse,⁴ studied the relationship between the parameter κ and the nonlinearity parameter λ in our model³ and have proposed a similar mechanism for the behavior observed at $\kappa = \kappa_c$.⁴ We have also carried out simulations in 2+1 dimensions which pinpoint the value of κ for which λ is zero.⁴

An important remaining question is whether the values of the exponents observed in the high- κ limit are the same as those for small κ , or correspond to a new phase with different exponents. Assuming the validity of the Kardar-Parisi-Zhang equation⁵ for the generalized restricted solid-on-solid model,³ one would expect the exponents to cross over to the low- κ values for large system sizes. Presently we are carrying out large-scale simulations to verify this possibility.

Jacques G. Amar and Fereydoon Family Department of Physics Emory University Atlanta, Georgia 30322

Received 20 March 1990

PACS numbers: 61.50.Cj, 05.40.+j, 05.70.Ln, 68.35.Fx

¹J. Krug and H. Spohn, preceding Comment, Phys. Rev. Lett. **64**, 2332 (1990).

²J. M. Kim, T. Ala-Nissila, and J. M. Kosterlitz, preceding Comment, Phys. Rev. Lett. **64**, 2333 (1990).

³J. G. Amar and F. Family, Phys. Rev. Lett. **64**, 543 (1990).

⁴D. A. Huse, J. Amar, and F. Family, Phys. Rev. A (to be published).

 ${}^{5}M$. Kardar, G. Parisi, and Y. Zhang, Phys. Rev. Lett. 56, 889 (1986).