Comment on "Phase Transition in a Restricted Solid-on-Solid Surface-Growth Model in 2+1 Dimensions"

In a recent Letter,¹ Amar and Family (AF) have done extensive numerical simulations of surface growth in d=2+1 with a finite-temperature restricted solid-onsolid (RSOS) growth model.² They find an unusual transition as a function of their parameter κ which plays the role of an inverse temperature. In this Comment, we propose an explanation of their results based on a continuum growth model. We argue that the observed "transition" is not due to a nonequilibrium analog of a roughening transition, but to the vanishing of the coefficient λ of the nonlinear term in the Kardar-Parisi-Zhang (KPZ) equation of a growing interface.³

We assume that the interface is always rough at long length scales,⁴ so that in the continuum limit the growth subject to a height restriction may be described by

$$\partial h/\partial t = \mu e^{-a(\nabla h)^2} [1 + b \nabla^2 h + c(\nabla h)^2 + \cdots],$$

where $h(\mathbf{x},t)$ is the height of the interface on a (d-1)dimensional substrate, a, b, and c are positive constants, μ is the random deposition rate with $\langle \mu \rangle = \mu_0$, and

$$\langle [\mu(\mathbf{x},t) - \mu_0] [\mu(\mathbf{x}',t') - \mu_0] \rangle = 2D\delta(\mathbf{x} - \mathbf{x}')\delta(t - t')$$

The exponential term represents a height restriction with strength a. Expanding this term and neglecting irrelevant higher-order terms one recovers the KPZ equation³ $\partial h/\partial t = v \nabla^2 h + \lambda (\nabla h)^2 + \mu$, with $v = \mu b$ and $\lambda = \mu$ $\times (c-a)$. For the RSOS model with $\kappa = 0$, λ is negative⁵ since some step sites are unavailable for growth. However, increasing κ will increase b since deposition at a step edge becomes more favorable than on a flat surface which, because of irreversibility, causes c to increase. A "peak" for which $\nabla^2 h < 0$ can neither evaporate nor spread out, and c must increase to cancel the effect of the negative $\nabla^2 h$ term. Since a remains constant there exists a κ_c for which the effective λ is zero. This case of an ideal interface can be solved exactly with exponents⁶ $\beta = \alpha = 0$ in d = 2 + 1. Thus, a logarithmic growth is expected at κ_c , as observed by AF. Moreover, since the sign of λ is irrelevant, the growth exponent should remain intact for $\kappa > \kappa_c$. The same conclusion can be obtained from a more microscopic argument. For $\kappa > 0$ the growth on step edges becomes more favorable than on the flat areas, and thus λ must be positive for large κ .

We can estimate the value of κ_c in d=2+1 with a simple argument. Namely, the growth rate of a step edge is proportional to $e^{-2\kappa}$, while that of the flat region is $e^{-4\kappa}$. Simulations give the result⁵⁻⁷ that about one-third of the sites are active (for $\kappa=0$). Equating $\frac{1}{3}e^{-2\kappa}$

to $e^{-4\kappa}$ gives $\kappa_c > (\ln 3)/2 = 0.55$. In higher dimensions, kinks in steps must be taken into account which leads to a lower value of κ_c . This argument also implies that the size of a flat region will be $\sim e^{2\kappa}$, so that finite-size effects will be very severe for large κ .

As a consequence of our arguments, in d = 1 + 1 there should be a change in the exponent β from the value of $\frac{1}{3}$ to $\frac{1}{4}$ at κ_c , while $\alpha = \frac{1}{2}$ remains unchanged. We have done simulations of the AF model with $\rho = 0$ and find that β indeed decreases from its $\kappa = 0$ value to the ideal surface value of $\frac{1}{4}$ at κ_c . We estimate that $0.8 < \kappa_c$ < 1.2. For $\kappa = 2.0$, the effective value of β increases from 0.27 ± 0.01 (L = 2000) up to 0.30 ± 0.01 (L = 4000), and for $\kappa = 3.0$ from 0.28 ± 0.01 (L = 1200)to 0.31 ± 0.01 (L=4000). For smaller systems (L = 400) it was not possible to obtain meaningful exponents for $\kappa > 2$. On the other hand, we get $\alpha = 0.5 \pm 0.02$ at both $\kappa = 1$ and 2, as expected. All these numerical results are consistent with the idea that growth using the AF algorithm can be explained by the KPZ equation with $\lambda = 0$ at κ_c . The effective exponents observed by AF for $\kappa > \kappa_c$ are due to the large effective microscopic length scale compounded by a very slow crossover from the ideal interface behavior in d = 2 + 1.

J. M. Kim thanks M. Moore and A. Bray for useful discussions. This work was supported by NSF Grant No. DMR 89-18358 (J. M. Kosterlitz), an ONR grant (T.A-N.), and the United Kingdom Science and Engineering Research Council (J. M. Kim).

J. M. Kim

Department of Theoretical Physics The University Manchester M13 9PL, United Kingdom

Tapio Ala-Nissila and J. M. Kosterlitz Department of Physics Brown University Providence, Rhode Island 02912

Received 16 February 1990 PACS numbers: 61.50.Cj, 05.40.+j

- ¹J. G. Amar and F. Family, Phys. Rev. Lett. 64, 543 (1990).
- ²J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett. **62**, 2289 (1989).
- ³M. Kardar, G. Parisi, and Y. Zhang, Phys. Rev. Lett. 56, 889 (1986).
 - ⁴P. Nozieres and F. Gallet, J. Phys. (Paris) **48**, 353 (1987).
- $^5 J.$ M. Kim, Ph.D. dissertation, Brown University, 1989 (unpublished).

⁶S. F. Edwards and D. R. Wilkinson, Proc. Roy. Soc. London A 381, 17 (1982).

⁷J. M. Kim, J. M. Kosterlitz, and T. Ala-Nissila (unpublished).