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Comment on ‘“Phase Transition in a Restricted
Solid-on-Solid Surface-Growth Model in 2+ 1 Di-
mensions”

In a recent Letter,' Amar and Family (AF) have done
extensive numerical simulations of surface growth in
d=2+1 with a finite-temperature restricted solid-on-
solid (RSOS) growth model.2 They find an unusual
transition as a function of their parameter x which plays
the role of an inverse temperature. In this Comment, we
propose an explanation of their results based on a contin-
uum growth model. We argue that the observed “transi-
tion” is not due to a nonequilibrium analog of a roughen-
ing transition, but to the vanishing of the coefficient A of
the nonlinear term in the Kardar-Parisi-Zhang (KPZ)
equation of a growing interface.?

We assume that the interface is always rough at long
length scales,* so that in the continuum limit the growth
subject to a height restriction may be described by

Oh/dt =pe ~*Y 1+ bV h+c(VR) 2+ - - ],

where h(x,t) is the height of the interface on a (d —1)-
dimensional substrate, a, b, and ¢ are positive constants,
u is the random deposition rate with {u) =po, and

Qux,t) —pollu(x',t") —pol) =2D6(x—x")6(t —¢') .

The exponential term represents a height restriction with
strength a. Expanding this term and neglecting ir-
relevant higher-order terms one recovers the KPZ equa-
tion® 8h/8t =vV2h+A(Vh) >4y, with v=pb and A=y
x(c—a). For the RSOS model with k=0, A is nega-
tive> since some step sites are unavailable for growth.
However, increasing x will increase b since deposition at
a step edge becomes more favorable than on a flat sur-
face which, because of irreversibility, causes ¢ to in-
crease. A “‘peak” for which V2h <0 can neither evapo-
rate nor spread out, and ¢ must increase to cancel the
effect of the negative V2h term. Since a remains con-
stant there exists a k. for which the effective A is zero.
This case of an ideal interface can be solved exactly with
exponents® f=a=0 in d=2+1. Thus, a logarithmic
growth is expected at k., as observed by AF. Moreover,
since the sign of A is irrelevant, the growth exponent
should remain intact for ¥ > k.. The same conclusion
can be obtained from a more microscopic argument. For
k > 0 the growth on step edges becomes more favorable
than on the flat areas, and thus A must be positive for
large «.

We can estimate the value of x. in d=2+1 with a
simple argument. Namely, the growth rate of a step
edge is proportional to e ~2*, while that of the flat region
is e 7% Simulations give the result>’ that about one-
third of the sites are active (for x =0). Equating e ~2*

toe "% gives x. > (In3)/2=0.55. In higher dimensions,
kinks in steps must be taken into account which leads to
a lower value of x.. This argument also implies that the
size of a flat region will be ~e2* so that finite-size
effects will be very severe for large «.

As a consequence of our arguments, in d =1+1 there
should be a change in the exponent 8 from the value of
¥ to 7 at k., while @ =} remains unchanged. We have
done simulations of the AF model with p=0 and find
that B indeed decreases from its k =0 value to the ideal
surface value of + at k.. We estimate that 0.8 < k.
<1.2. For x¥=2.0, the effective value of B increases
from 0.27%£0.01 (L=2000) up to 0.30%0.01
(L =4000), and for x=3.0 from 0.28 +0.01 (L =1200)
to 0.31+0.01 (L=4000). For smaller systems
(L =400) it was not possible to obtain meaningful ex-
ponents for k>2. On the other hand, we get
a=0.510.02 at both k=1 and 2, as expected. All these
numerical results are consistent with the idea that
growth using the AF algorithm can be explained by the
KPZ equation with A =0 at k.. The effective exponents
observed by AF for x> k. are due to the large effective
microscopic length scale compounded by a very slow
crossover from the ideal interface behavior in d =2+1.
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