Comment on "Phase Transition in a Restricted Solid-on-Solid Surface-Growth Model in 2+ ^I Dimensions"

In a recent Letter, λ Amar and Family (AF) have done extensive numerical simulations of surface growth in $d=2+1$ with a finite-temperature restricted solid-onsolid (RSOS) growth model.² They find an unusual transition as a function of their parameter κ which plays the role of an inverse temperature. In this Comment, we propose an explanation of their results based on a continuum growth model. We argue that the observed "transition" is not due to a nonequilibrium analog of a roughening transition, but to the vanishing of the coefficient λ of the nonlinear term in the Kardar-Parisi-Zhang (KPZ) equation of a growing interface.³

We assume that the interface is always rough at long length scales, 4 so that in the continuum limit the growth subject to a height restriction may be described by

$$
\frac{\partial h}{\partial t} = \mu e^{-a(\nabla h)^2} [1 + b\nabla^2 h + c(\nabla h)^2 + \cdots],
$$

where $h(\mathbf{x},t)$ is the height of the interface on a $(d-1)$ dimensional substrate, a , b , and c are positive constants, μ is the random deposition rate with $\langle \mu \rangle = \mu_0$, and

$$
\langle [\mu(\mathbf{x},t) - \mu_0][\mu(\mathbf{x}',t') - \mu_0] \rangle = 2D\delta(\mathbf{x}-\mathbf{x}')\delta(t-t')
$$

The exponential term represents a height restriction with strength a. Expanding this term and neglecting irrelevant higher-order terms one recovers the KPZ equation³ $\partial h/\partial t = v \nabla^2 h + \lambda(\nabla h)^2 + \mu$, with $v = \mu b$ and $\lambda = \mu$ $\times (c-a)$. For the RSOS model with $\kappa = 0$, λ is negative⁵ since some step sites are unavailable for growth. However, increasing κ will increase b since deposition at a step edge becomes more favorable than on a flat surface which, because of irreversibility, causes c to increase. A "peak" for which $\nabla^2 h < 0$ can neither evaporate nor spread out, and c must increase to cancel the effect of the negative $\nabla^2 h$ term. Since a remains constant there exists a κ_c for which the effective λ is zero. This case of an ideal interface can be solved exactly with exponents⁶ $\beta = \alpha = 0$ in $d = 2 + 1$. Thus, a logarithmic growth is expected at κ_c , as observed by AF. Moreover, since the sign of λ is irrelevant, the growth exponent should remain intact for $\kappa > \kappa_c$. The same conclusion can be obtained from a more microscopic argument. For $\kappa > 0$ the growth on step edges becomes more favorable than on the flat areas, and thus λ must be positive for large κ .

We can estimate the value of κ_c in $d = 2 + 1$ with a simple argument. Namely, the growth rate of a step edge is proportional to e^{-2x} , while that of the flat region is e^{-4x} . Simulations give the result⁵⁻⁷ that about onethird of the sites are active (for $\kappa = 0$). Equating $\frac{1}{3}e$

to $e^{-4\kappa}$ gives $\kappa_c > (\ln 3)/2 = 0.55$. In higher dimensions, kinks in steps must be taken into account which leads to a lower value of κ_c . This argument also implies that the size of a flat region will be $-e^{2k}$, so that finite-size effects will be very severe for large κ .

As a consequence of our arguments, in $d = 1 + 1$ there should be a change in the exponent β from the value of $\frac{1}{3}$ to $\frac{1}{4}$ at κ_c , while $\alpha = \frac{1}{2}$ remains unchanged. We have done simulations of the AF model with $\rho = 0$ and find that β indeed decreases from its $\kappa = 0$ value to the ideal surface value of $\frac{1}{4}$ at κ_c . We estimate that $0.8 < \kappa_c$ <1.2. For κ = 2.0, the effective value of β increases from 0.27 ± 0.01 $(L = 2000)$ up to 0.30 ± 0.01 $(L = 4000)$, and for $\kappa = 3.0$ from 0.28 ± 0.01 $(L = 1200)$ to 0.31 ± 0.01 $(L = 4000)$. For smaller systems $(L = 400)$ it was not possible to obtain meaningful exponents for $\kappa > 2$. On the other hand, we get $\alpha = 0.5 \pm 0.02$ at both $\kappa = 1$ and 2, as expected. All these numerical results are consistent with the idea that growth using the AF algorithm can be explained by the KPZ equation with $\lambda = 0$ at κ_c . The effective exponents observed by AF for $\kappa > \kappa_c$ are due to the large effective microscopic length scale compounded by a very slow crossover from the ideal interface behavior in $d = 2 + 1$.

(b. S. M. Kim thanks M. Moore and A. Bray for useful
(b. discussions. This work was supported by NSF Gran J. M. Kim thanks M. Moore and A. Bray for useful No. DMR 89-18358 (J. M. Kosterlitz), an ONR grant (T.A-N.), and the United Kingdom Science and Engineering Research Council (J. M. Kim).

3. M. Kim

Department of Theoretical Physics The University Manchester M13 9PL, United Kingdom

Tapio Ala-Nissila and J. M. Kosterlitz Department of Physics Brown University Providence, Rhode Island 02912

Received 16 February 1990 PACS numbers: 61.50.Cj, 05.40.+j

- 'J. G. Amar and F. Family, Phys. Rev. Lett. 64, 543 (1990).
- 2J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989).
- ³M. Kardar, G. Parisi, and Y. Zhang, Phys. Rev. Lett. 56, 889 (1986).
	- 4P. Nozieres and F. Gallet, J. Phys. (Paris) 48, 353 (1987).
- ⁵J. M. Kim, Ph.D. dissertation, Brown University, 1989 (unpublished).

⁶S. F. Edwards and D. R. Wilkinson, Proc. Roy. Soc. London A 381, 17 (1982).

 $7J.$ M. Kim, J. M. Kosterlitz, and T. Ala-Nissila (unpublished).