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Comment on "Phase Transition in a Restricted
Solid-on-Solid Surface-Growth Model in 2+ I Di-
mensions"

In a recent Letter, ' Amar and Family (AF) have done
extensive numerical simulations of surface growth in
d =2+1 with a finite-temperature restricted solid-on-
solid (RSOS) growth model. They find an unusual
transition as a function of their parameter ic which plays
the role of an inverse temperature. In this Comment, we

propose an explanation of their results based on a contin-
uum growth model. We argue that the observed "transi-
tion" is not due to a nonequilibrium analog of a roughen-
ing transition, but to the vanishing of the coefficient X of
the nonlinear term in the Kardar-Parisi-Zhang (KPZ)
equation of a growing interface. i

We assume that the interface is always rough at long
length scales, so that in the continuum limit the growth
subject to a height restriction may be described by

t)h/8t =pe ' " [1+bV h+c( Vh) + ]

where It(x, t) is the height of the interface on a (d —1)-
dimensional substrate, a, b, and c are positive constants,
p is the random deposition rate with (p) po, and

([p (x, t ) —pol [p (x', t') —pp]) =2Db(x —x') 6'(t t ') . —

The exponential term represents a height restriction with
strength a. Expanding this term and neglecting ir-
relevant higher-order terms one recovers the KPZ equa-
tion t1h/Bt vV &+A, (Vh) +p, with v pb and A. =p
x (c —a). For the RSOS model with x 0, k is nega-
tive since some step sites are unavailable for growth.
However, increasing ic will increase b since deposition at
a step edge becomes more favorable than on a flat sur-
face which, because of irreversibility, causes c to in-
crease. A "peak" for which V h &0 can neither evapo-
rate nor spread out, and c must increase to cancel the
effect of the negative V h term. Since a remains con-
stant there exists a x', for which the effective A, is zero.
This case of an ideal interface can be solved exactly with
exponents P a=0 in d=2+1. Thus, a logarithmic
growth is expected at x„as observed by AF. Moreover,
since the sign of A, is irrelevant, the growth exponent
should remain intact for a. & tc, The same conclusion
can be obtained from a more microscopic argument. For
x & 0 the growth on step edges becomes more favorable
than on the flat areas, and thus X must be positive for
large K.

We can estimate the value of x, in d =2+1 with a

simple argument. Namely, the growth rate of a step
edge is proportional to e ", while that of the Aat region
is e ". Simulations give the result that about one-
third of the sites are active (for r =0). Equating —,

' e

to e "gives ic, & (ln3)/2 0.55. In higher dimensions,
kinks in steps must be taken into account which leads to
a lower value of x, . This argument also implies that the
size of a flat region will be -e ", so that finite-size
effects will be very severe for large x.

As a consequence of our arguments, in d =1+1 there
should be a change in the exponent P from the value of

3 to 4 at ~„while a =
2 remains unchanged. We have

done simulations of the AF model with p 0 and find

that P indeed decreases from its a. 0 value to the ideal
surface value of 4 at x', . We estimate that 0.8& tc,

&1.2. For x 2.0, the effective value of P increases
from 0.27+ 0.01 (L 2000) up to 0.30 ~ 0.01
(L 4000), and for x 3.0 from 0.28+'0.01 (L 1200)
to 0.31 ~ 0.01 (L 4000). For smaller systems
(L 400) it was not possible to obtain meaningful ex-
ponents for x & 2. On the other hand, we get
a 0.5+ 0.02 at both x 1 and 2, as expected. All these
numerical results are consistent with the idea that
growth using the AF algorithm can be explained by the
KPZ equation with k 0 at ic, The .effective exponents
observed by AF for it & x, are due to the large effective
microscopic length scale compounded by a very slow

crossover from the ideal interface behavior in d 2+ l.
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