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We show that the intense space charge of a high-current beam may increase the gap capacitance by a
factor of 2 to 3 over the vacuum value. The limiting current under an ac gap voltage is computed and
compared with the steady-state value. The implications of these findings on operation efficiency and fre-

quency stability of high-power microwave devices are discussed.

PACS numbers: 85.10.Jz, 41.80.Ee, 52.75.Ms

Recent advances in relativistic klystron amplifiers'
(RKA) led to electron acceleration to energies greater
than 60 MeV over a distance of 1 m. ' In the relativis-
tic klystron configurations at the Naval Research Labo-
ratory, an intense electron beam was used, whose in-

stantaneous current may reach the limiting value beyond
which electrons begin to be reflected by a gap. The
beam's intense space charge, while providing the unusual

advantage of electrostatic insulation against vacuum
breakdown at the cavity gaps, could significantly load
the gap, leading to (a) reduction in the operation
efficiency, (b) long buildup time in the current modula-
tion, and (c) detuning of the cavities. Some of these
features were suggested in recent experiments and in

particle simulation results. As indicated below, how to
account for the beam-loading capacitance in the pres-
ence of intense space charge was an open question.

Another basic question which has hardly been ad-
dressed concerns the limiting current which can be trans-
ported across a gap under dynamical conditions. The
crucial interactions in an RKA take place when the high-

ly modulated intense beam enters a gap, whose gap volt-

age has a dominant sinusoidal component. The usual no-
tion of gap transit-time factor, for instance, needs to be
reassessed when the limiting current is approached. In
practice, the limiting current under ac conditions under-
lies the operation efficiency and the stability of RKA's.
If the modulating gap voltage is too low, the beam power
will not be effectively transferred to the load, and if the
modulating gap voltage is too high, virtual cathodes are
formed and electrons are reflected, destroying the
amplifier stability. These issues of beam loading and ac
limiting current are of such a general nature that they
are likely to arise in many other high-power microwave
devices, such as the relativistic magnetrons, vircators,
etc. They may have caused the lower efficiencies (com-
pared with conventional sources) that were observed in

experiments on those high-current devices.
In spite of a long history of studies of beam-gap in-

teraction, what should be taken as the appropriate gap

capacitance, when an intense beam crosses the gap, is far
from clear, even under the quasi-dc condition. For a
number of reasons, the nonlinear capacitances intro-
duced by Friedman and Serlin, which were generalized
from the ones by Bull, ' are inadequate. For example,
they are inconsistent with those established in conven-
tional klystron literature when the limit of a nonrelativis-
tic, low-current beam is taken. Nevertheless, Friedman
and Serlin made two important observations. First, the
nonlinear dependence on the gap voltage of the stored
electrostatic energy can lead to significant harmonic gen-
eration in an intense beam (and these harmonics may be
utilized for pulse shaping). Second, the simple, one-
dimensional parallel-plate model of the gap captures the
essential features of the stored energy of the more corn-
plex coaxial cavity gaps that were used in the experi-
ments. To isolate the roles of convection current, image
charge, and displacement current, we consider the simple
parallel-plate model henceforth.

The model consists of an electron beam impinging
upon a gap formed by two parallel plates. The plate (K)
located at x =0 is grounded and the plate (A) at x =D is
held at the gap voltage V~(t). The electrons may or may
not carry a current modulation or velocity modulation
when they enter the gap at plate K. In the limit of a
nonrelativistic, weak beam, low transit time, and small
signal gap voltage, the effective gap capacitance C is
modified by the beam's dc space charge in the following
way 8 1 I

C=CD(1+ 6 tvpD /vo) .

Here CO=Aeo/D is the gap capacitance in vacuo (A is
the area of the plate), vo is the streaming velocity of the
electrons at the gap entrance, and co~=(epo/moeo)' is
the electron plasma frequency corresponding to the
beam's space-charge density po. Equation (1) may easily
be derived from the beam-loading factor in classical
klystron theory.

Equation (1) already hints of the following effects of
space charge on beam-gap interactions: (a) They in-
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crease the gap capacitance, thereby providing additional
shunts of the current to the load and resulting in a lower
efficiency; (b) the rise time ("RC" time constant) is

longer, when the gap is connected to a circuit of im-

pedance R; (c) the space charge may lead to detuning of
the natural frequency because of the additional capaci-
tive element. It is clear that these effects are particularly
pronounced as the limiting current is approached, and a
first step toward understanding their magnitude is to
provide a suitable, consistent, definition of gap capaci-
tance which is valid up to the point of limiting current
and then evaluate its magnitude.

In the one-dimensional model, the total current (con-
vection current and displacement current)

I&(t) =I(x, t) A—fpc)E(x, t)/at
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In the second form of Eq. (3), we have expressed the to-

is independent of the position x within the gap. " It is

also the current which is delivered to the load. Equation
(2) is exact, since it is obtained by taking the divergence
of the Maxwell equation, V&H= —pv+ep8E/Bt. In
Eq. (2), I(x, t) represents the convection current (Apv)
due to the space-charge flow within the gap. It also in-

cludes the reflected currents within the gap, if any. (We
assign p & 0; and I)0 if v is positive. )

Since Eq. (2) is independent of the position x, we may
evaluate 1& anywhere within the gap. The most con-
venient place to evaluate I~ is right in front of the plate
K at x 0+, in which case I(0+,t) is simply the input
current I;(t) entering the gap (if it is below the limiting
value' ) and this incident current is presumably given as
an input parameter. Thus, we treat the input current
I(0+,t) as an ideal current source. The remaining quan-
tity Aep&E(0+, t—)/clt in Eq. (2) is then the current
that is shunted by the (nonlinear) gap capacitance.
Note that this way of viewing beam loading is just bor-
rowed from the conventional klystron theory. It is also
important to note that, as I~(t) is independent of x, we

have in effect eliminated the ambiguity stressed in Refs.
9 and 10 regarding whether the beam-loaded capaci-
tance should be evaluated at plate K or plate A. By
Gauss's law E(0+,t) crt, /ep, where at, is the total sur-
face charge density on plate K.

To determine the degree of beam loading when the
limiting current is approached, let us now pretend that
the intense beam enters the gap without any initial
current modulation or velocity modulation. If the gap
voltage V~(t) is quasistatic over the gap transit time, we

may write.paE(0', t)IBt =&cry(t)IBt =(Berk/BVg) BVgl&t

and identify the quasi-dc, nonlinear gap capacitance as
[cf. Eq. (2)l

FIG. 1. The dc limiting current I, as a function of the dc
gap voltage Vg. Here, the incident kinetic energy of the elec-
trons is 511 keV.

tal surface charge as Aak = —CpVg+Aok;, the sum of
the surface charge ( —CpVg) due to the vacuum field,
and the (remaining) image charges Aak, on plate E due
to the space charge of the beam within the gap.

Let us verify that the nonlinear capacitance C given by
Eq. (3) is indeed consistent with the expression (1) in

the classical, low-frequency limit. In the presence of a
constant gap voltage Vg, a nonrelativistic, weak beam
undergoes uniform acceleration a =(e/mp) Vg/D. The
velocity at position x is v(x) =vp+at up+ax/vp, and
the space-charge density p(x) ppvp/v(x) =pp(1 —ax/
vp) when the gap voltage is weak. The potential distri-
bution roc(x) between x 0 and x D may easily be
solved from the Poisson equation d y/dx =pp(1
—ax/v p)/ep subject to the boundary conditions y(0) =0
and lrc(D) V~. It is obvious that the solution y(x) is a
cubic polynomial in x, which consists of the vacuum po-
tential V~x/D, and of the remaining parts representing
the self-fields of the beam. From this polynomial, we

may readily calculate at, = —epdy(x)/dx, to be evalu-
ated at x=0. We find ak = (CpVg/A)(1+cp~D /
6vp)+p, where p is a quantity independent of Vs. Sub-
stituting this expression of at, into Eq. (3) yields Eq. (1).

The limiting current I„depends on the gap voltage.
Under dc conditions, it can be obtained analytically'
and is shown by the solid curve in Fig. 1. (In the figures,
the current is in units of the current scale I, =—Cpmpc /e,
where c is the speed of light. ) Also shown in Fig. 1 are
the data obtained from a particle code and from a fluid
code. ' To specify the problem, we need to provide the
input current I;(t) and velocity v;(t) of the electrons as
they enter plate K, as well as the gap voltage
Vg = fp dx E. The two —codes are validated against the
analytic theory in Fig. l.

The dependence of the nonlinear capacitance C on the
quasi-dc gap voltage is shown in Fig. 2, at various levels
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FIG. 3. The critical current of a dc beam when it is subject
to a sinusoidal gap voltage of amplitude V~0 and normalized
frequency ft = roD/c.

FIG. 2. The nonlinear dependence of the gap capacitance on
the quasi-dc gap voltage, at various levels of steady current.

of injected dc beam current Ip. The data were obtained
from the particle code, in which a continuous dc beam is

injected into an empty gap at t 0, and the data are tak-
en at a later time when the transients have died out and

is then obtained according to Eq. (3). From Fig. 2,
one sees that the nonlinear capacitance can be a factor of
2 to 3 times higher than the vacuum capacitance, when
the limiting current is approached. This ought to be tak-
en as significant beam loading. Beam loading is most
pronounced when the gap retards the beam (Vs & 0), in

which case the gap holds more space charge.
The above considerations pertain to quasi-dc condi-

tions. We now use the particle code to determine the
limiting current when the gap voltage Vs(r), or the in-

cident current I;(t) at plate K, is modulated. ' Since a
particle code is used, the nonlinear, transient effects on
the limiting current due to beam loading and to gap
transit-time factors are accounted for fully. We assume
I;(r) Ip+I~ sin(rot) and Vs(t) Vspcos(rot+&), where
cp is the angular frequency of modulation and I I V
alld

0~ 1 s gos

an p are constants. Note that 0= roD/c is roughly the-
transit angle, in radians, for a relativistic electron. %'e

assume that the beam has no velocity modulation when it
enters the gap, i.e., v;(t) =vp=0. 866c, as in Figs. 1 and
2. Shown in Fig. 3 is the limiting current as a function
of 0 when I~ -0, &=0, and Vsp-150, 300, and 450 kV.
This figure may be understood as follows. In the low-

frequency limit (0 0), the limiting current is deter-
mined by the retarding phase of the gap voltage. It
therefore approaches the value of I, (dc) given in Fig 1C

corresponding to a decelerating dc gap voltage
Vg

=
~ Vgp (. At a high frequency (0 && 1), the elec-

tronic motion does not respond to the rapidly oscillating

2I
~S

I (O, t) = I [1+cosoit]

Cdo/C

FIG. 4. Peak values (2Ip, ) of the critical current of a fully
modulated beam as a function of the normalized frequency
coD/c The beam enters a short-circu. ited gap.

gap voltage. Thus, the limiting current in that case ap-
proaches the dc value I, (dc) corresponding to Vs 0 in

Fig. 1. Note from this figure that for 0~ 2, the pres-
ence o an ac gap voltage has a diminishing infiuence on
the limiting current.

We next compute the limiting current when the enter-

ing beam is fully modulated: I;(t) Ip(1+cosrpr). We
assume a zero gap voltage. Shown in Fig. 4 is the criti-
cal value of the peak current (2Ip, ) as a function of 0
when v;(t) 0.866c. Again, the critical current 2Ip, in-

creases with the modulation frequency, from the dc value
as 0 0 and to an increase by 40% for 0=2. In the
limit 0 ~, it is projected' to reach twice the value

corresponding to 0 0.
In summary, we have used a standard model to cut

through a number of cloudy issues concerning intense
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beam interaction with a gap. Quantitative measures are
given for the nonlinear gap capacitance and the limiting
currents under dynamical conditions which are otherwise
difficult to isolate in a full-scale electromagnetic simula-
tion of complex geometries. Not only is beam loading
found to be an important factor in RKA's, it is likely to
be just as important in all radiation sources (or accelera-
tor gaps) whenever the space-charge potential of the in-
tense beam is a significant fraction of the diode voltage.
One may then wonder whether the limited efficiencies or
the nonmonochromatism observed in relativistic magne-
trons, vircators, etc. , may in part be attributed to the
nonlinear beam-gap interaction of the sort described in
this paper. While our analysis has accurately modeled
the important contributions from the displacement
currents, the inductive effects have been excluded from
the simple model.
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