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Boundary Condition for Fluid Flow: Curved or Rough Surfaces
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The curvature of the boundary is shown to alter the fluid's slip length, which may even become nega-
tive as a result. As a result of the mesoscopic curvature of surface roughness, the microscopically calcu-
lated and the macroscopically measured slip lengths can be quite diA'erent.
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relates the tangential component v J of the velocity to its
spatial derivative ~&& normal to the surface. The slip
length ( is usually of the order of the mean free path X.

Neglecting it as one would in a hydrodynamic approach,
we have v& =0 as the standard hydrodynamic boundary
condition. This, however, is not necessarily true: Take
the case of liquid He that is contained in a vessel with

walls covered' by superfluid He. Here, the surface is

very slippery, and without any roughness on a mesoscop-
ic scale, the He would slide past it with little friction.
As a result, the slip length is macroscopic and much
larger than the mean free path, g»X. Then the slip
boundary condition (1) becomes genuinely hydrodynam-
1c.

We raise three points in this Letter. First is the proof
that Eq. (1) indeed represents the most general hydro-
dynamic boundary condition compatible with conserva-
tion laws and irreversible thermodynamics. Its form
remains valid even if the surface is curved.

The second point is the fact that the slip length g has
two contributions:

1 1 1

(p R
(2)

The first term I/gp is well known, microscopic in origin,
and determined by the fraction of diffuse scattering off a
flat boundary. ' The second term, not considered be-
fore, is mesoscopic or macroscopic and simply given by
the boundary's curvature radius R (along the projection
of the velocity). R is taken to be positive for convex, and
negative for concave, solid boundaries. This puts us into
a somewhat new situation, especially when the solid sur-
face retracts and R is positive. Then, in spite of diffuse
scattering (i.e. , a dissipating, rubbing wall or gp&~), we

may still encounter a diverging slip length g and a van-

ishing normal derivative v&. In fact, if R & gp, the total
slip length may even become negative and the location of

In this Letter, we consider the problem of fluid flow

past solid walls. The boundary condition
I

UJ UJ

vanishing velocity goes into the liquid. After deriving
Eq. (2), we calculate the velocity field between two con-
centric cylinders which rotate at different velocities.
This example entails macroscopic curvature radii and il-

lustrates nicely the physics of negative slip lengths.
The third point we raise is our main focus; it concerns

mesoscopic curvature radii, more commonly referred to
as surface roughness. There are a number of hydro-
dynamic experiments that are performed in the presence
of macroscopically flat surfaces (one example is the im-

pedance of an oscillating plate). They all provide infor-
mation about a slip length. The usual prejudice in inter-

preting these experiments is that this slip length is just
gp, calculated microscopically assuming a flat surface.
This has led to substantial disagreement between theory
and experiment. ' With the knowledge of Eq. (2), it is

not hard to see why: The measured "effective" slip
length g, tr contains the information of the appropriately
averaged ( of Eq. (2), which depends especially on the
curvature radii of the surface roughness. Note that the
existence of these curvatures, being mesoscopic, contra-
dicts neither the microscopic nor the macroscopic flat-
ness. To avoid misunderstanding, we close the introduc-
tion by emphasizing the following point. The contribu-
tion of the curvature radius, at each point of the surface,
to the slip length ( of Eq. (2) becomes important obvi-

ously only when gp is large. Nevertheless, the averaged,
macroscopic slip length g,s remains finite even if gp van-
ishes. In fact, (,tr is negative in this case; cf. Eq. (6)
below. This can be interpreted as a shift of the surface
position and, e.g. , correctly accounts for the reduced to-
tal flux in a Poiseuille-flow experiment.

We start with the configuration of a two-dimensional
flow in which the liquid is confined to the upper half
space. Taking h, to represent the difference of any quan-
tity across the interface, the general connecting condi-
tions of shear flows between the two different hydro-
dynamic systems are (i) the equality of the transverse
momentum currents perpendicular to the interface,
AII~ =0, and (ii) the proportionality of this current to
the difference in the shear velocity, aHJ =hv J . Positivi-
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ty of the entropy production requires a & 0 (for a deriva-
tion cf. Ref. 5). Other pairs of analogous connecting
conditions are also derived and studied in Ref. 5; e.g., (i)
the equality of the entropy currents, Af 0, and (ii)
x.,f -LET, with x; the Kapitza resistance and T the tem-
perature. We define a slip length (p=art, rt being the
shear viscosity contained in II&, and two vectors: n is
normal to the interface and pointing towards the liquid
and t is along vi. No third vector is needed, if we

neglect the anisotropy of the surface material. The
second connecting condition can be written as

(p(V k vi +Vi vk ) ti nk vi t i . (3)
Note the following points: (i) This is the general bound-

ary condition for shear flows in a fluid, since it solely in-

volves the velocity of the liquid and its derivatives. (ii) It
is valid only in the rest frame of the wall. (In fact, it is

the Galilean invariance that yields Ave —vi in the
wall frame and renders the derivation easy. There is no
equivalent way to relate hT to the temperature of the
liquid alone. ) (iii) With v vtn+vit and vt 0 at the
boundary, the nonlinear term pv;vk does not contribute
to Eq. (3). (iv) Noting again the two formulas of (iii)
and further that (t V)vt t;Vkt; 0, we find t;nkVkv;

nkVkvi and t;nkV;vk van;(tkVk)t; Now, . tkVk d/
ds and dt; n; dp, where s denotes the distance traversed
along the arc and p the angle between t and the horizon-
tal line. Therefore, the second term can simply be writ-
ten as t;nkV;vk v~/R, where the curvature is 1/R

dP/ds. We have R & 0 for the concave liquid (or con-
vex solid) surface. Inserting these into Eq. (3) leads to
Eqs. (1) and (2). These two are the physically transpar-
ent version, while Eq. (3) is frequently the computation-
ally convenient one.

We proceed to consider the effect of macroscopic cur-
vatures: Two concentric cylinders of radii R i & Rz, with
a fluid in between, rotate at different angular velocities,
tpi and tp2, respectively. The smaller cylinder (index 1)
has the slip length (gp '+Ri ') ', while for the larger
one it is (gp

' —R2 ') '. The resulting velocity field is
purely azimuthal, v ar+br ', with radial dependence.
Denoting 8 —= (1 —2'/R2)/R2 and 8—= (1+2(p/Ri)/Ri,
we have

AN] 8N2
a

A —8
Ni —N2

8—A

So for (p R2, we have Bv/Br 0 at R2, and Bv/tir &0
for gp&R2. At first sight, this result seems puzzling.
But there is really no cause for worry, since the physical-
ly relevant quantity, the torque (per unit area) transmit-
ted from the inner to the outer cylinder, is a positive and
monotonically decreasing function of gp, vanishing with

Ni N2
da i rxII i 2rt4 (8—A)Rp

This experiment appears easy enough to perform, though

it does require an exceedingly smooth surface. The
reason is of course that surface roughness is always
present, and one has to substitute g,s, mentioned before,
for gp in all the above formulas; cf. Eqs. (5)-(8) below.
Then even with a generous layer of He at the wall to
achieve maximal specularity and slip gp, a surface rough
enough will still render g, ir much smaller than R2. [It
may be of interest to note that if one employs the usual
boundary condition, Eq. (1) with g gp, the torque is
positive only for (&Ri and unphysically negative for
g& Ri.. a further sign, if one is needed, of the incom-
pleteness of this boundary condition. ]

We now turn to mesoscopic curvature radii. Our mod-

els for surface roughness are given by superpositions of
sinusoidal waves, each with wave number k; and ampli-
tude h;. Both have to be much larger than the mean free
path A, , yet much smaller than any linear, macroscopic
dimensions such as the smallest distance L in the ap-
paratus or the viscous penetration depth b. To calculate

g ff the crucial point is the fact that in deriving Eq. (3),
equivalently Eqs. (1) and (2), it was not necessary to
specify the interface. Hence we may, on the one hand,
take Eq. (1) as the mesoscopic boundary condition to
calculate the velocity field in the presence of a given sur-
face irregularity. On the other hand, we are equally
justified to take the interface as a broader entity, within
which the roughness-induced modification of this velocity
field becomes exponentially small. Then, we may again
use Eq. (1) as the boundary condition, albeit a macro-
scopic one. It has a different slip length, which we

denote as i,",ir. Performing both calculations at once, we

can equate the results to obtain i,",ir as a function of gp

and the parameters characterizing the surface roughness.
The following is noteworthy: Since Eq. (1) is generally
valid, and especially independent of the precise meaning
of the interface, we may think of it as the structure of
the boundary condition for shear flows.

Now we consider the specific case of Poiseuille flow

between two parallel, rough plates of distance L, with an

external pressure applied along the x direction. The
linearized diff'erential equations are V v-0 and the sta-
tionary Navier-Stokes equation is Vp rtdv. Their solu-
tion must satisfy vii v n 0 and Eq. (3), at the bound-

ary defined by y+ L/2 ~ (L/2 yR (x)]. —
As a first example, we consider the case of a weakly

varying surface of the form

yit(x) g [h„' cos(nkx) +h„' sin(nkx) ] .

The velocity 6eld is straightforward to 6nd and one can
compute the total flux Q Q(yn). This we equate, as
explained above, with the flux between two macroscopi-
cally flat surfaces characterized by an effective slip
length g, ir. The result is, up to order x. ,

gp(1 —
4 Z, ic&) —X& x&/nk(1+2nkgp)

ff 5
I++„x„(—,

' +nk(p)
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where a.„=nk[(h„') +(h„') ]'i . Hence, as one would

expect, because of the additional mechanism for momen-
tum transfer, the macroscopic (',Ir is always smaller than
the microscopic (II. In two limiting cases, simple addi-
tion laws hold: For the "stick" limit, kgp«1, (,Ir may be
decomposed into two lengths according to

@It=k+0' (6)

with a new temperature-independent length
g„—x„/nk characterizing the surface roughness of the

wall. This result can be easily interpreted as an
effectively reduced cross-sectional area. If kgp»1, on
the other hand, we find

(—
I

g
—I+(~—

I (7)

1.0—

W, {x}

l
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FIG. 1. Normalized asymptotic eA'ective slip lengths wo(Ir)
and w (Ir) vs Ir Solid lines, ex. act numerical results; dashed
lines, fourth-order ~ expansions.

with a new length g =(g„nktr„) ', again temperature
independent.

Our second example is given by the superposition of
two incommensurate sinusoidal curves yR(x) =h

I

x cos(k Ix) +h2cos(k2x). The general expression for

g, Ir is quite similar to Eq. (5); one simply has to replace
nk by k, .

As a third example we consider the case of a simple
wavy surface, yR(x) =hsin(kx), but relax the assump-
tion of weak variation Ir«1. We have solved this prob-
lem numerically. In addition, we obtained an interpola-
tion formula for the effective slip length: As a function
of k(0, (,Ir varies monotonically from the exact limiting
value g„(Ir) to g (Ir), to within a few percent deviation
from the numerical result, as

Ir kgog (Ir)+ g (Ir)/(I +2k/a)
1+x' k(0

The input g„(Ir) —wII(Ir)Ir /k and g„(Ir) =w (Ir)/
kIr2 is provided numerically; see Fig. 1 (solid lines). The
functions wo (x) are found to decrease monotonically
from 1, their value for the weakly varying limit. An ex-

pansion in small Ir yields

1
—Ic /4+19Ir /96+0(Ir )

WO(K') =
1+K (1 —x /2)/2+O(x' )

and

w (Ir) = 1 S—~'/4+61~'/64+ O(~')
I+Ir (1 —Sx' /8)/2+O(Ir )

The result is represented by the broken lines in Fig. 1.
For Ir( 0.5 the Ir expansion is obviously an excellent ap-
proximation.

Although all three examples have yielded plausible
and similar results for the contribution of surface rough-
ness to the slip length, it seemed prudent to examine a
different physical situation with these boundaries. If our
concept is correct, Eqs. (1) and (2) are valid indepen-
dent of the situation, and so neither should the slip
length g,Ir depend on it. We consider the shear im-

pedance Zi of a plate oscillating with a velocity v =vII
x exp(irIIt) The . complex impedance Zi =X+iY is

defined as fdaI1j/v and can again be calculated either
way: mesoscopically for a given wavy surface and ma-
croscopically for a flat one characterized by an effective
slip length. Reassuringly, the resulting slip length (,Ir for
the low-frequency impedance of the boundary shape

yR(x) hsin(kx) is the same as given by Eq. (5).
Finally, we compare our results to the experimental

data of Ritchie, Saunders, and Brewer. ' At 40 mK, the
measured torsional-oscillator impedance with 4% He on
the walls yields a ratio Y/X=-0. 6 or (,Ir=-8/3=5. 3 turn.
(8=(640 pm)/[T/(I mK)] is the viscous penetration
depth at saturated vapor pressure. ) For simplicity, we

assume total specularity, or (II eo. Then k '=1.8
turn, /I 1 pm is a plausible pair of values that, via Eq.
(8), leads to the right size for (,Ir. They compare well

with the measured roughness of 1 turn normal to the sur-
face. The shear impedance ZiR =XR+iY~ of pure He
(where (II=-0) was also measured. As expected, its slip
length gIr is close to zero, („being a factor of 10 smaller
than g for the above pair of values. With (,Ir 6 turn

and @It=0, we obtain Y/YR =0.50, X/XR =0.86. They
agree fairly with the measured values of 0.45 and 0.70,
respectively. We must not extend this consideration to
lower temperatures, since at 9 mK the mean free path
X=-(70 pm)/[T/(1 mK)] becomes equal to h, invali-

dating any calculations with the mesoscopic boundary
condition. The macroscopic boundary condition, howev-

er, remains valid, since A. «8 for the entire experimental
temperature range between 4 and 40 mK. So, although
Eq. (8) cannot be expected to remain correct, (,It=0.4h
=(260 pm)/[T/(I mK)] is what one can still conclude
from the essentially temperature-independent ratios
Y/X, Y/Y~, and X/X~.

%e summarize as follows: Shear flows obey the slip
boundary condition, Eq. (1), quite generally. Mesoscop-
ically, the slip depends on both the specularity and the
local curvature of the interface. Macroscopically, it also
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depends on the surface roughness. We have calculated
the macroscopic eA'ective slip length for two diAerent
physical situations, Poiseuille Row and the transverse
surface impedance of an oscillating plate. As expected,
the results are the same. Our models for surface rough-
ness include periodic and nonperiodic ones. A more
comprehensive account of our results will be published
else~here.

Sometime ago, H. Schmidt argued that boundary con-
ditions are not always extrinsic add-ons to hydrodynam-
ics. As an example, he offered the case of total slip on a
wavy surface which he, as it now turns out, correctly
thought should yield complete stick on a larger scale.
We gratefully acknowledge that it was this comment
that sent us along the line of work reported above.
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