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The electron-hydrogen scattering problem has been a nemesis to theoretical atomic physicists due to
the fact that even the most sophisticated of theoretical calculations, both perturbative and nonperturba-
tive, do not agree with experiment. The current opinion is that the perturbative approach cannot be used
for this problem since recent second-order calculations are not in agreement with the experimental data
and higher-order calculations are deemed impractical. However, these second-order calculations
neglected second-order exchange. We have now added exchange to the second-order calculation and
have found that the primary source of disagreement between experiment and theory for intermediate en-

ergies is attributable not to higher-order terms but to second-order exchange.

PACS numbers: 34.80.Dp

Electron-hydrogen scattering is one of the fundamen-
tal problems of atomic physics and has been studied
numerous times both theoretically and experimentally.
One of the intriguing aspects of this problem is that
agreement between experiment and even the most so-
phisticated of current theories is not satisfactory. If one
wishes to examine this problem theoretically, there are
two approaches which may be used —the close-coupling
approach or the perturbation-series approach. The pri-
mary advantage of the perturbation-series approach is

that different physical effects can be isolated and exam-
ined. A review of the perturbation-series method was

given by Walters. ' If one compares first-order pertur-
bation-series results with experiment, qualitative agree-
ment is found, but the agreement is not satisfactory.
The immediate conclusion is that second-order or
perhaps higher-order terms are important. Some early
second-order calculations were performed' which seemed
to improve agreement between experiment and theory,
but again the agreement was not satisfactory. These
early calculations, however, invoked several simplifying
approximations in the evaluation of the second-order am-

plitude so it was felt that the problem might lie in the
approximations producing a poor representation of the
second-order amplitude. These works were followed by
some second-order calculations which did not make sim-

plifying approximations —a second-order plane-wave
Bofn calculation for 2s excitation of hydrogen by Ermo-
laev and Walters and some extensive second-order
distorted-wave calculations by our group for excitation
of both the 2s and 2p states of hydrogen. Again these
second-order results were not in satisfactory agreement

with experiment for scattering from the most elementary
atom hydrogen.

These latter calculations included first-order direct
and exchange terms and second-order direct-scattering
terms. Initially it was not expected that second-order ex-
change would be important since first-order exchange
was fairly small, particularly at intermediate energies.
However, close-coupling results indicated that second-
order exchange may be important so we decided to ex-
amine its effect. In this paper, we report the first results
of an exact calculation of the effects of second-order ex-
change, where we define "exact" to mean that no ap-
proximations are made in the evaluation of the ampli-
tude. We have found that not only is second-order ex-
change important, most importantly it brings theory and
experiment into very good agreement for both elastic
scattering and inelastic scattering for quantities which
depend on the magnitude of the amplitude. As will be
demonstrated, second-order exchange transforms state-
of-the-art perturbation-series results which are mediocre
and disappointing into results which agree with experi-
mental differential cross sections and 1 parameters as
well as one could reasonably hope for.

The exact T matrix for electron-hydrogen scattering
with complete allowance for exchange is given by Eq.
(161) of Goldberger and Watson. This result was ob-
tained for the case of the incoming and outgoing projec-
tiles being represented by a plane wave. If one expresses
the initial- and final-state plane waves in terms of initial-
and final-state distorted waves, it can be shown that the
exact T matrix in the distorted-wave representation is

given by

Tf, =2(~f (o)~f(I) ~
V —Uf ~~y, (I)g,'(0))+(~f (o)~f(l) ~Uf ~ q, (l)p, (0))

+2(gf (0)yf(I) ~
(V Uf)A(E+ —0) 'A(V ——U, )

~
y;(I)g;+(0)),

where y; and yf are the initial and final atomic wave functions and H is the Hamiltonian for the system,

H=h, +Tp+ V, (2)
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where h, is the Hamiltonian for the hydrogen atom, Tp
is the kinetic-energy operator for the projectile, and V is
the interaction between the projectile and the atom (nu-
clear interaction plus electron-electron interaction). The
distorting potentials U; and Uf are initial- and final-state
spherically symmetric approximations for V and these
potentials are used to calculate the distorted waves g;
and gf,

(To+U —Km)gm -o, (3)

where m i or f and K2 is the corresponding energy of
the projectile electron. The remaining undefined quanti-

A
' [1+( 1)'Pp)j, (4)

where Po~ is the operator which interchanges particles 0
and 1 and where s 0 corresponds to singlet scattering
and s 1 corresponds to triplet scattering.

The factor which prohibits the exact evaluation of Eq.
(1) is the full Green's function (E+ —H) '. Standard
perturbation-series expansions result from (1) when a
series expansion is made for the Green's function:

ties are P; which is an initial-state plane wave,
(E H—) ' which is the full Green's function for the
scattering problem, and A which is the antisymmetrizing
operator

(E+ —h, —Tp —V) ' (E+ —h, —Tp —U) '+(E+ —h, —To —U) '(V —U)(E+ —h, —Tp —U) '+ . (5)

where U is a third distorting potential. For the standard development of perturbation series' U is set to zero and Eq.
(5) is the expansion of the full Green's function in terms of the free-particle Green's function. If U is non-zero, (5) rep-
resents the expansion of the full Green's function in terms of a distorted Green's function, and we have allowed for this
possibility since one would logically assume that the distorted-Green s-function series would converge more rapidly.
The second-order perturbation series is obtained by truncating the expansion (5) after the first term. With this trunca-
tion, the second-order amplitude becomes

Tf &gf (e)'yf(1) I vf(e, 1) I w;(1)x,'(o)&+&~f (0)pf(1) I Uf(o) I y;(1)p;(o)&

+ ( —1)'&gf(0) lpf (1) I vf (0, 1) I y;(0)g;+(1)&

+ 2 Z &Zf (o ) Wf (» I Vf (O, 1 ) I yjv (»gN (0 0)PN ( I ) I V (0, 1 ) I V (1 )X (0)&

N

+ i ( —I)'g&gf (1 )lief(0) I Vf(1,0) I piv(1 )gN+(0, 0)pg(1) I V;(0, 1) I y;(1)g( (0))
N

+ ( 1) Z&gf (0 )I//f(1 ) I vf(0 1 ) I Q+(I )g+ (0,0)4~(1) I v (l,o) I ~, (0)~ (I ))
N

+ -' Z&xf (1')yf(0') I Vj (1',O')
I
yjv(i') gN'(0', 0)yw(I ) I V (1,0) I W (0)X'(1)&, (6)

where

Vf(j,k) — —Uf(rj)+2z 2
I'j rjK

and

v, (j,k) - — —U, (r, )+2z 2 (8)
Pj'K

In Eq. (6), p~ is the intermediate atomic state (discrete
or continuum) and the sum implies a sum over discrete
and an intergral over continuum intermediate states.
This sum and integral was performed numerically until
convergence was achieved, similar to the calculation of
Madison and Winters. Finally, the distorted Green's
function is given by

gN (0',0) &ro'
I tE + —E'Jv To U) '

I ro&,

where ejv is the energy of the intermediate state pjv.
The various terms of Eq. (6) can be identified as fol-

lows: first term —first-order direct-scattering amplitude
for inelastic scattering; second term —first-order direct-
scattering amplitude for elastic scattering; third term—first-order exchange amplitude; fourth term —second-

order direct-scattering amplitude; fifth term —second-
order exchange amplitude for which the atomic electron
goes to the intermediate atomic and then to the final pro-
jectile state; sixth term —second-order exchange ampli-
tude for which the atomic electron goes to the intermedi-
ate projectile state and then the final projectile state; and
seventh term —second-order exchange amplitude for
which the atomic electron goes into the intermediate pro-
jectile state and then back into the final atomic state. In
our previous works, the first four terms were evaluated
but not the last three second-order exchange terms. The
last exchange term might reasonably be called a direct
process since the atomic electron is finally in the atom
and the projectile electron is in the detector, but we clas-
sify it as an exchange process since it results from the ex-
change operator and does not arise without it.

We have calculated second-order amplitudes including
these three exchange terms exactly. Obviously, this is a
significantly more difficult calculation since there are
now four independent second-order amplitudes which
need to be evaluated. Our results for the differential
cross section for elastic scattering, 2s excitation, and 2p
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excitation of hydrogen are shown in Fig. 1. For each
case, three results are shown: (1) first-order results
which we label DWB1; (2) second-order direct-
scattering-only results for the case of U 0 which we la-
bel DWB2D(go); and (3) second-order results including
second-order exchange for the case of U=U~„where
U&, is the distorting potential for the ground state of hy-
drogen [we label this calculation DWB2E(g~, )l. The
selection U U~, was made since this choice gives some-
what better agreement with experimental data than
U 0 as will be noted later. From Fig. 1 it is seen that
the second-order direct term generally tends to improve
agreement with experiment but that the agreement is

certainly not as good as is desirable. However, when
second-order exchange is added, agreement between ex-
periment and theory becomes very good. We also calcu-
lated second-order-exchange results for the case of U 0
which we would label DWB2E(go). The DWB2E(go)
results and the DWB2E(g~, ) results for the differential
cross section would be very similar in a journal figure.

Angular correlation parameters are an even more sen-
sitive test of theory than differential cross sections. In
Fig. 2 our results are compared with experiment for the

and R parameters. " For these parameters, the
DWB2E(g~, ) results are in good agreement with experi-

ment over the entire angular range for the 2, parameter
and for angles out to 60 for the R parameter. The
large-angle R parameter represents the only case where
we found a significant disagreement between experiment
and the DWB2E(g~, ) calculations. Distortion in the
Green's function is more important for the X and R pa-
rarneters than it was for the differential cross section.
For the case of the k parameter, DWB2E(g~, ) has a
higher maximum near 50' and a deeper minimum near
100' than does DWB2E(go). Since the primary im-

provement was due to second-order exchange, the
DWB2E(go) results are omitted for clarity. For the R
parameter, the DWB2E(go) results do not dip as low as
the DWB2E(g~, ) results at 70', but the two calculations
are qualitatively similar.

We have also looked at the effects of each individual
second-order exchange term to determine their relative
importance. This comparison revealed that all three
terms are comparably important so none of them could
be neglected. The first two exchange terms [terms 6 and
7 of Eq. (6)] produce very similar results such that if ap-
proximations were necessary, it would not be unreason-
able to equate these two terms. This is not particularly
surprising in light of the fact that these two terms repre-
sent similar physical processes.
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FIG. 1. Differential cross section in units of a$ for clastic
and inelastic electron-impact excitation of hydrogen. The in-
cident electron energy is 50 eV for elastic scattering and 54.4
eV for inelastic scattering. The experimental data are from
(*) Williams (Ref. 8); (a) Frost and Weigold (Ref. 9); and
(0) Williams (Ref. 10). The theoretical curves are (dash-
dotted line) DWB1; (dotted line) DWB2D(go); and (solid
line) DWB2E(g~, ).

FIG. 2. Angular correlation parameters for 54.4-eV
electron-impact excitation of the 2p state of hydrogen. The ex-
perimental data are from (0) Williams (Ref. 10); (A)
Weigold, Frost, and Nygaard (Ref. 11); and (+) Slevin et al.
(Ref. 12). The theoretical curves are (dash-dotted line)
DWB1; (dotted line) DWB2D(go); and (solid line)
DWB2E(g(, ).
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It is to be noted that the differential cross section and
k parameter depend only on the magnitude of the com-
plex T matrix while the R parameter depends on both
the magnitude and the phase of the complex amplitude.
These results, therefore, indicate that when exchange is
included to second order, the resulting T matrices are in

good agreement with experiment for the magnitude of
the amplitude at all angles and that the theoretical re-
sults are in good agreement with the phase of the ampli-
tude for angles less than 60'. Assuming the experiments
are correct, the theoretical phases for angles greater than
60' are evidentially incorrect. On this point, it is intri-

guing and somewhat puzzling that nearly all theoretical
calculations predict positive values for the R parameter
at large scattering angles while the experimental values
are negative. It is also to be noted that Slevin et al. '

measured the R parameter at 35 eV and they obtained
positive values for the R parameter at large scattering
angles which are similar to our DWB2E(g~, ) results.

The fact that the second-order terms are very impor-
tant naturally makes one wonder if third- and higher-
order terms are also important. This is, or course, an is-
sue of central importance to the utility of perturbation
series. For the case of direct scattering, we can get a
very good idea of the importance of higher-order terms
for elastic scattering by comparing the present results
with the optical-model close-coupling calculation of
Bray, Madison, and McCarthy. ' In that calculation,
the second-order optical potential was evaluated in the
same manner as we have evaluated the second-order am-
plitude here. Since the Bray, Madison, and McCarthy'
calculation is a close-coupling calculation, it contains
contributions from all orders of perturbation theory.
Further, if a perturbation expansion were made of those
close-coupling results, the first two terms would be iden-
tical to the present calculation. Consequently, the
difference between the two calculations represents the
effects of a subset of third- and higher-order terms.
Comparing the two calculations revealed that the aver-

age difference between differential cross sections was 7%
at l00 eV and 15% at 54.5 eV. Assuming the close-
coupling calculation contains the most important parts of
the higher-order terms, these results indicate that the
second-order direct scattering term is converged to
within (10-15)% for elastic scattering in this energy
range. Unfortunately, we cannot make a similar com-
parison which includes second-order exchange. We
would note, ho~ever, that the second-order exchange
term is of comparable size to the second-order direct
term and that the good agreement we have obtained with
experiment for three different scattering situations should

give a positive indication that the higher-order terms are
not important.

In summary, this work is the first perturbation-series

calculation to have included second-order exchange ex-
actly. We found that not only was second-order ex-
change important, it dramatically improved agreement
between experiment and theory for parameters which de-
pended only on the magnitude of the T matrix for three
different processes —elastic scattering, 2s excitation, and

2p excitation. Perhaps the most important consequence
of this work lies in the implications for perturbation
series. The previous exact second-order results without
exchange did not agree with experiment and it was as-
sumed that the problem must originate from third- and
higher-order terms. Consequently, it was assumed that
it ~ould not be possible to use perturbation series to ob-
tain accurate results because of the extreme difficulty as-
sociated with calculating the higher-order terms. These
results provide new life for perturbation series since they
clearly demonstrate both that second-order calculations
are practical and feasible and that accurate results can
be obtained from such calculations for the intermediate
energy range. A preliminary report of this work was re-
cently presented.
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