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We use covariant string field theory to explore many-body string physics. A candidate nonperturba-
tive vacuum is identified via a level-truncation scheme. The breaking of internal and Lorentz sym-
metries is investigated. We show that tree-level string physics exhibits similarities to loop-level particle
physics. The effective string coupling runs at tree level, inducing asymptotic freedom. This is a feature
of any string theory. The running coupling has significant effects on the spectrum in the nonperturbative

vacuum, including the disappearance of states.

PACS numbers: 11.17.+y

The remarkable phenomenological successes of parti-
cle field theories in recent years stem from many-body
effects. These include asymptotic freedom and confine-
ment in the strong interactions, and spontaneous symme-
try breaking and the Higgs mechanism in the elec-
troweak interactions. The phenomenological viability of
superstring theories may also hinge on collective interac-
tions. Certainly, superstrings in a perturbative first-
quantized approach are poorly suited to describing the
Universe: The dimensionality of spacetime is too large,
and the spectrum is unrealistic.

This paper analyzes the string in its second-quantized
version. We perform a semiclassical treatment of the co-
variant field theory of the open bosonic string.'™ Our
goal is insight, not phenomenology: Neither fermions
nor gravity are present at this level.

In any field theory, vacuum structure is crucial. The
open bosonic string is particularly interesting because
tachyons destabilize the canonical 26-dimensional vacu-
um. Interactions may stabilize the theory in a different
ground state, in which the tachyon field has a nonzero
expectation value.® Below, we identify a candidate vacu-
um, show that it is inaccessible in the zero-slope limit,
and address the possibilities of spontaneous Lorentz- and
internal-symmetry breaking.

We also demonstrate that the semiclassical string field
theory has similarities to a non-Abelian particle gauge
theory at the loop level. The string coupling runs at tree
level, inducing tree-level asymptotic freedom. This sub-
stantially affects the physics in the nonperturbative vacu-
um. The number of states differs from the zero-slope
count.

The basis of our analysis is a mass-level truncation
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scheme. Light fields often dominate physical processes.
The reliability of this effect is further enhanced in co-
variant string field theory because the coupling between
three states decreases exponentially with the sum of their
squared masses, ie., it behaves like (4/3v/3)"
=~exp(—26n), where n=0,1,2,... denotes the level
number. The validity of the truncation scheme can be
judged by direct comparison with available exact results
and by the magnitude of higher-level corrections to
lower-level results. Both methods indicate convergence
of the scheme.” In this paper, the fields incorporated are
the tachyon and the massless vector. At this truncation
level, one should see the qualitative features of higher-
level truncations while avoiding complexities.

The string field ¥ is a linear combination of ordinary
particle fields whose coefficients are the solutions of the
first-quantized theory:

v =(¢%+iAak | —a®b _icot+ - )|0). (1)
Here, ¢"b is the tachyon field, A[,’b is the massless vector
field, and a® is an auxiliary field. The superscripts are
Paton-Chan factors,® so that ¥ and its particle-field
components are square matrices. If the Paton-Chan
group is SO(N) or U(N), odd mass-squared levels such
as the tachyon form, respectively, symmetric or Hermi-
tian matrices; even levels such as 4, and a form an-
tisymmetric or anti-Hermitian matrices. For U(1), our
conventions agree with those of Ref. 7 if the 1 x1 Hermi-
tian and anti-Hermitian matrices are 1 and —i. The
first-quantized string vacuum is |0)=c,| @), where | Q)
is the S1(2,R)-invariant vacuum.® The factor i in Eq.
(1) ensures the reality condition "+'° w59 =y abt,

At this truncation level, the Langrangian is
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where y=3v3/4, o' is the Regge slope, and g is the
Yang-Mills three-vector coupling. The latter is related
to the on-shell three-tachyon coupling g by g
=g(2a')'2/4. Note that there is a suppression factor of
y " in an interaction term, where n is the sum of the
mass-level numbers of the interacting fields. At all levels
the particle fields f in the interaction Lagrangian are
smeared over a distance (a') /%

f=expla'In(3v/3/4)9,8"1f . 3)

On shell, §=y ~'¢, A*=A* and d=a. :

We seek a static vacuum solution. Setting f=f and
eliminating other momentum-dependent terms from the
Lagrangian yields the following static potential:

Vstalic(¢,Ay,a) = 'al,' tr( ;_ ¢¢+aa)

4
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where xk =33v/3/2". An extremum of this potential rep-
resents a vacuum solution.

The usual perturbative solution about ¢ =A,=a =0 is
a local maximum. It is unstable and is an unsuitable
choice of vacuum. A similar situation occurs in particle
field theories: In the electroweak model, for example,
the naive vacuum is perturbatively a local maximum in
the scalar potential and the theory seeks a stable vacuum
for which the scalars have expectation values.

To search for another solution, we take advantage of
the global SO(V) or U(V) symmetry to diagonalize the
matrix of the tachyon field. A local minimum in Vagc
occurs at

(%) : = $o6°t =5%/3kga’' =~ 0.916%/ga’,
(5)
(A72)=0, (a®)=0.

Since (¢) is of order 1/g, it is nonperturbative.® The
value of Vgaic at the minimum is a contribution to the
cosmological constant A: A ~'=—2x3%x%g2a>/N.

When the next few levels are incorporated, the local
minimum remains.” The value of ¢ increases first by
about 20% to ¢o==1.083/ga’, and then to ¢o = 1.088/ga’.
The magnitude of these changes suggests that the level-
truncation scheme yields qualitative features of a more
exact treatment.

String field theory has a natural mechanism for the
spontaneous breaking of the 26-dimensional Lorentz
group'! due to the term $A4,4* in Eq. (2). A negative
value of (¢) would generate a negative squared mass for
A*. This in turn would induce an expectation value for
A,, breaking O(25,1) to O(24,1). However, our positive
value of (¢) excludes this possibility.

From Egs. (2) and (3), we see that the string coupling
runs already at tree level: The momentum-space cou-
plings of three arbitrary states contains expl—a'(p")?

x1n(3+/3/4)], where r =1,2,3 is summed. It follows that
the tree-level string field theory exhibits asymptotic free-
dom: The effective couplings decrease exponentially for
large spacelike momenta with the scale being set by
(a')'2, which is of the order of the Planck length.'?
Short-distance effects are perturbatively calculable in
any vacuum state.

Tree-level asymptotic freedom should be a property of
any string field theory. It is a consequence of the extend-
ed nature of the string, which causes good ultraviolet be-
havior by smearing interactions at short distances. Like
loop effects in particle theories, the momentum-
dependent couplings renormalize propagator poles and
the analysis of any scattering process requires wave-
function renormalization.

The running coupling causes difficulties with the deter-
mination of the spectrum of heavy states. This involves
large squared timelike momenta p¢ for which the
effective coupling is exponentially large: g(pd) =g
xexpl3a’pdIn(3v/3/4)]. Strong-coupling effects render
perturbation theory untrustworthy so that, once interac-
tions are introduced, the location of poles in the S matrix
at momenta above 1/(a')'/? is hard to establish. The
high-mass spectrum in an interacting theory may be
quite different from the free case.

A more subtle consequence of the running couplings is
that some states may disappear entirely from the spec-
trum. Let us show how this arises in the level-one trun-
cation scheme. The spectrum in the nonperturbative
vacuum of Eq. (5) is analyzed by finding the zeros of the
inverse propagators associated with the tachyon and vec-
tor fields. It simplifies matters to decompose fields into
irreducible Lorentz multiplets. The field A4, contains a
scalar A° and a vector A, where we define A,
=AT+8,4%/(|18%])"? with AL =8*4,/(|82]) "2

The analysis of small oscillations in the nonperturba-
tive vacuum reveals no mixing between the scalars ¢ and
AL, In Euclidean momentum space, the quadratic form

Q,(p?) associated with ¢ is
33
e ” . (6)

A propagator pole at p2=—p¢ exists if Q,(—pé)=0.
However, Q,(—p¢) is positive for all values of p§.

The state associated with ¢ has disappeared from the
spectrum. This effect can be attributed to the running
coupling and to the presence of the exponentials of p? in
the propagator. Without this transcendental behavior,
i.., if ¢ instead of ¢ appeared in Eq. (2), there would be
a state associated with the field ¢ with a mass of
1/(a") 2.

Usually, in particle field theories the total number of
degrees of freedom is unaffected by the presence of
nonzero expectation values. In the electroweak model,
for example, the number of degrees of freedom is
preserved when the three intermediate vector bosons ac-

0,(p?)=p*— $+—57exp —2a'p?In

2239



VOLUME 64, NUMBER 19

PHYSICAL REVIEW LETTERS

7 MAY 1990

quire masses by absorbing three scalar states. The equa-
tion Qo(—p4) =0 avoids this constraint by virtue of its
transcendental nature.'> The string condensate in the
nonperturbative ground state prevents the propagation of
¢ beyond the Planck length.

Next we consider 4,. The quadratic forms for 4, and
AL are, respectively,

2° 3V3

2) = 2 s 2n | DY

Q.r(p?)=p°+ g &P 2a'p ln[ 4 H @)

and

2° | 2%p? 3V3
2y =p?2 A2

Q. (p?)=p°+ 33a'+—3-;L exp[ 2¢'p“In 4 .
€))

We find that QA[(P2= —m?) never vanishes as a func-

tion of m 2, so no real pole appears for the transverse vec-

J

so=qy’X,¢1+qyik, & —qy [%

5A, =, r+qli,A,)+q| %

1/2
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tor field. In contrast, the scalar AL has a real pole at
m . =1/(a') 2. If the exponential factors were absent in
Eqgs. (7) and (8), there would be real poles for A4, at
—2%/3%a'~ —1.19/a' and for A% at p?=—2°/43q'
= —0.74/d'.

Loop effects probably produce further vacuum insta-
bility due to the appearance of the closed string and its
tachyon. The nature of the ground state must again be
determined. If the spectrum of the full theory resembles
that found above, i.e., if it contains neither tachyons nor
massless states, then infrared problems are absent and
the bosonic string theory in the true vacuum is finite. A
complete analysis of nonperturbative finiteness awaits
the formulation of a consistent closed-string field theory.

Let us next address the breaking of internal sym-
metries. String field theory is a gauge theory with an
infinite number of gauge transformations that form a
string field A%. The lowest-level particle field A% in
A®=(—A%+ ---)| Q) generates the following trans-
formation at our truncation order:

1/2
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where a tilde over a commutator or anticommutator in-
dicates smearing the product of the two fields using Eq.
(3). In the zero-slope limit, the field transforms as a
non-Abelian SO(V) or U(/V) particle gauge theory. Ex-
plicit calculation reveals that Eq. (2) is invariant under
Eq. (9) at orders g% and g' but not at order g2. Order-
g? invariance is recovered only when all levels are incor-
porated.

From Eq. (9), no spontaneous A-symmetry breaking
occurs at this truncation order because (¢) is proportion-
al to the identity matrix and commutes with A. To es-
tablish which string symmetries are spontaneously bro-
ken in the full theory, we separate each of the fields ¥
and A into two groups: Oy and E, for ¥, O, and E, for
A. Here, O and E represent odd and even mass-squared
levels, respectively. As matrices, ' =0 and E"=—E.
The field ¢ is in Oy and A is in £,. When higher levels
are incorporated, other scalars acquire expectation
values but all of them are in Oy.” Hence, (Ey)=0 but
(tr(0¢))=0. Unbroken symmetries leave (tr(Oy)) in-
variant; broken symmetries transform (tr(Oy)). Since
the structure of the string gauge transformations is

804 =Q0\+[E 041 +H{EA\EJ+1{04,04 +104,E ],
the low-energy non-Abelian A symmetry is unbroken to

2240

(I%,8*4,] +z[aux,fi“1>—%y{x,¢'} ,

all truncation orders. The broken symmetries corre-
spond to the trace of the odd levels of A.

Usually, in particle theories there is a massless vector
boson for each unbroken gauge symmetry. String theory
is different. In the free theory, there are an infinite num-
ber of gauge symmetries but only one massless vector
field A,‘,’b. Furthermore, as seen above, the absence of
spontaneous gauge-symmetry breaking does not guaran-
tee the masslessness of the vector gauge bosons.

It is interesting to compare these unusual effects with
features of the strong interactions. In quantum chromo-
dynamics, the SU(3) color group is unbroken but the
theory contains no massless vector bosons. The gluons,
like A2 above, do not manifest themselves as poles in the
S matrix. These effects are probably a consequence of
color infrared slavery, a property absent in tree-level
string physics because the effective couplings are finite at
zero momentum. In contrast, the string effects are due
to asymptotic freedom.

The above discussion implicitly assumes that the non-
perturbative vacuum is perturbatively stable at the
quantum-mechanical level. This is actually the case.
The relevant criterion is that the Euclidean-space propa-
gators of the small field fluctuations never diverge, i.e.,
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that the quadratic forms never vanish.” We have con-
firmed numerically that Eqs. (6)-(8) are nonvanishing
in Euclidean space for all p2. The stability criterion is
violated by the canonical vacuum, where the tachyon
quadratic form vanishes at p>=1/a’.

Nonperturbative quantum-mechanical stability is
harder to address. The local minimum of the potential is
not a global minimum and may be subject to barrier
penetration. Since there is a tunneling-suppression fac-
tor for each degree of freedom and since string theory in-
volves an infinite number of particle fields, string tunnel-
ing should be inhibited relative to particle tunneling.
This question deserves further attention.

Unless all nonzero expectation values are very small
compared to 1/ga’, the spectrum of any string theory in a
nonperturbative vacuum is probably significantly
changed relative to the free case because the powers of
exp(a'p?) that appear in quadratic forms are likely to in-
duce mass shifts of Planck-scale order. Furthermore,
barring the vanishing of key couplings the gauge sym-
metries do not necessarily maintain masslessness of vec-
tor bosons, as we have seen. This brings into question
whether a nonperturbative vacuum can be phenomeno-
logically viable. However, since the standard model and
grand unified theories require the breaking of sym-
metries, nonperturbative many-body physics at some
scale is necessary. These contrasting facts emphasize the
long-standing question concerning the construction of a
realistic string model: How to generate a light spectrum
for the observed particles when the natural scale is the
Planck mass.
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