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Self-Dual Chem-Simous Vortices
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We study vortex solutions in an Abelian Chem-Simons theory with spontaneous symmetry breaking.
We show that for a specific choice of the Higgs potential the vortex satisfies a set of Bogomol'nyi-type,
or "self-duality, " equations.
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VE —x8 p,
where E' F' —A' —V;A o, and B = —F '2 =VX A.
Upon integration over the entire plane, this has the im-

portant consequence that any excitation with charge

g fd rp(t, r) also carries magnetic fiux @ fd r
xB(t,r) given by

e- —(1/x) g. (3)

The first term in Eq. (2) integrates to zero owing to the
long-distance damping effected by the "photon" mass

All gauge-invariant gauge-field quantities are
short range. For the same reason, the spatial integral of
B converges, but then it also follows necessarily that A is

long range, so that the spatial integral of V&A is
nonzero. Thus, charged systems also carry a vortexlike
magnetic field. '

While the normal particle content of the gauge-field
degrees of freedom is a single excitation with mass l x l,
this is modified by coupling to a U(1)-symmetry-
breaking scalar field. The gauge field then acquires two

propagating modes, with distinct masses diff'ering by x.
Together with the Higgs-field degree of freedom, there
are three propagating excitations with diA'erent masses.

When the symmetry is broken, there also exist classi-
cal vortex solutions. These are of the Nielsen-Olesen
variety, except that they are charged, as required by Eq.
(3).'

In this Letter we return to the problem of charged vor-
tices, but with gauge-field dynamics governed solely by
the Chem-Simons term. This "Chem-Sirnons electro-

Charged planar matter interacting with "photons"
whose dynamics is governed not only by the Maxwell
Lagrange density —

—,
' F""F„,but also by the Chern-

Simons term (x/4)e""F„,A, gives rise to topologically
massive (2+ 1)-dimensional "electrodynamics, " with

gauge-field equations

B„F'"+(x/2) e"'~F,~ J" .

Here, J" (p,J) is the conserved matter current and our
Minkowski-space metric tensor rl„, is diag(l, —1, —1).
The time component of Eq. (1) is the Chem-Simons-
modified Gauss law

X =
l D„P l

+ —, xe'P"A, Fp„—V( l p l ), (4)

where D„P (8„+ieA„)p We req.uire that the Higgs
potential V(l pl ) have a symmetry-breaking minimum
at l p l v and that it contain only renormalizable in-
teractions. If we further normalize so that V(v) =0, the
potential must have the form

V(lgl)= [(lpl v ) +a v (lyl —v ) ] (5)
4

When a ~ 2, there is also a symmetric minimum at
& =0. For the asymmetric minimum to be a global mini-
mum we need a2~ 1. The self-duality equations emerge
when X =2e /l x l and a =1.

The theory possesses two propagating modes. In the
symmetry-breaking phase the Higgs mode has mass
mH =A,av, while the gauge-field excitation carries mass
m, =2e'v'/l xl.

Here we are interested in time-independent vortex
solutions to the field equations that approach the asym-
metric vacuum at spatial infinity. These are stationary
points of the energy, which for static configurations may
be written as

E =„d'r [ I no I' —e'A.'
I y I'+ xAOB+ V(l p l )],

where D=V —I'eA. By varying with respect to Ao, we

dynamics" may be viewed as the x ~ limit of the to-
pologically massive model, where the relation (3) holds
locally in space. The truncation is physically sensible at
large distances and low energies, where the lower-
derivative Chem-Simons term dominates the higher-
derivative Maxwell term. In this limit, and with the
symmetry-breaking realization, one of the two gauge-
field masses becomes infinite, so that the corresponding
particle decouples from the low-energy spectrum, leaving
one massive gauge degree of freedom as well as the
Higgs mode. Not unexpectedly, a charged-vortex solu-
tion still exists. Moreover, we show that for a specific
choice of the Higgs potential the vortex satisfies a set of
Bogomol'nyi-type, or "self-duality, "equations.

The Lagrange density for our model is
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obtain the relation

8
2e' lel'

(7)

Since the charge density of a static configuration is

p = —2e Av I p I, Eq. (3) is recovered by integrating
both sides of (7) over all of space. A further relationship
involving the flux is obtained by noting that to have finite
energy Dp must vanish at spatial infinity. If I P I is non-
vanishing there, it then follows that asymptotically A

—(i/e)V in&, and hence

teger values.
Substitution of (7) into our expression for the energy

yields
r

2 g2~- d" ID~I'+ ' +«l~l) .4e' lel'

Variation of this gives a set of second-order static field
equations. We leave the analysis of these for elsewhere,
and specialize now to the case A, 2e2/a. and a I. With
this choice the Higgs- and gauge-field masses are equal,

dl Vlnp
l 2'
e 4 f~oo e

where n is a topological invariant which takes only

(8)
mH m~ 2e v /I x I

=—m,

and the symmetric and asymmetric vacua are degen-

t

in- crate. The energy may then be rewritten, after an in-
tegration by parts, as

r
h K' —eE „d r 1(Dt ~iD2)pl + p 8~ P (v lpl ) ~ev @.

2e K' (io)

We thus have a lower bound on the energy

E ~ e" I ~ I
-2n"

I n I,
which is saturated by fields obeying the self-duality
equations

I ness of the energy leads to a(ao) 0.
For configurations of this form, the magnetic field is

8 —a'/er (with the prime denoting differentiation with
respect to r) so that the flux is

Dly-+ iD2y,

I e I'
2 v2 v

(i2)

(i3)

e- [a(O) —a(~)]-2K 2'
e e

as expected. The angular momentum is obtained from
the momentum density P via

where the upper (lower) sign corresponds to positive
(negative) values of 4 and n.

If we define p vge'", then Eq. (12) implies

eA' (V;co+' e~)V, lng) .

When substituted into Eq. (13), this gives

V'g -m 'e'(e' —1),

(14)

(is)
where g=—lng . This equation can also be obtained by
requiring that the positive, energylike functional

y(r, e) =ug(r)e'"e,

eA'(r, 8) ej.(r~/r )[a(r) n] . —
(i7)

(18)

In order that the fields be nonsingular at the origin, we
must impose the boundary conditions g(0) =0 and a(0)
=n The requi. rement that p approach the asymmetric
vacuum at large distance implies g(~) =1, while finite-

C -„d'r[ ,' (V~)'+ —,
' m'(e-»- i)']

be stationary.
Let us examine the solutions with axial symmetry, cor-

responding to I n I elementary vortices superimposed at
the origin. By appropriate gauge transformation, such
solutions can be brought into the form

J d rrxP
4

d 2r [Dog*r x Dy+ Doyr x (Dp) ]

d r (ir/e )8 [r x V Arg (p) —er x A]

(nx/e ) dr(a )'

- —(nor/e')n', (2o)

where Eq. (7) has been used on the third line. '

Substitution of this Ansatz into Eqs. (12) and (13)
gives

g'-+ aglr,
a'/r = ~ —,

' m'g'(g' —1).
(21)

(22)

g =1 —CEO(mr), a CmrIC ~ (mr) . (23)

To find the behavior at small r, we attempt a po~er-

Since the solutions for n and narc related by the-
transformation g g, b —b, we consider only the
case n) 0. At large r, where b=—1 —g«1, Eqs. (21)
and (22) may then be approximated by the linear equa-
tions h'= —a/r and a' —2m r8. The solution with

appropriate behavior at infinity is
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series solution and obtain (for positive n)

Ag=A(mr)" —
2

(mr) "+ +O((mr) "+ ),
2(2n +2)2

2n+ 2A

2(2n+ 2)
A4+ (mr) "+ +O((mr) "+ )2(4n+2)

(24)
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FIG. I. The functions (a) a(r) and (b) g(r) The solid, .
dashed, and dotted lines correspond to n 1, 2, and 3, respec-
tively.

The constant A is not determined by the behavior of the
fields near the origin, but is instead fixed by requiring the
proper behavior as r . Thus, for a solution with A
too large, g reaches unity at some finite value ri, with

a(r i) & 0; for all r & ri, both g' and a' are positive, with

g and a both growing without bound as r . If, in-

stead, A is too small, a becomes negative, at some value

r2, while g is still less than unity. For r & r2, both g' and
a' are negative and, asymptotically, g 0 while a tends
toward a negative constant a . The value of A separat-
ing these two regimes gives the vortex solution we seek.

To solve Eqs. (21) and (22) numerically, we choose an
initial value of A and then integrate out from the origin
until either g&1 or a &0. We then repeat the pro-
cedure with a new value of A, chosen to be larger or
smaller depending on which condition terminated the

10

FIG. 2. The magnetic field (solid line) and the radial com-
ponent of the electric field (dashed line) for the n= I solution,
in units of e/m .

previous integration. By successive iteration of this pro-
cedure we find that A 0.3239, 0.0389, and 0.0029 for
n 1, 2, and 3, respectively, ' ' and obtain the solutions
shown in Fig. 1. In Fig. 2 we plot the magnetic field and
the magnitude of the (purely radial) electric field for the
n 1 solution.

Similar self-duality equations arise in the four-
dimensional Ginzburg-Landau model with standard,
rather than Chem-Simons, electromagnetism when the
parameters are chosen to make the vector and scalar
masses equal (i.e., when the model describes a system on
the boundary between type-I and type-II superconduc-
tivity). ' Two dilferences should be noted. First, while
Eq. (12) still holds, Eq. (13) is replaced by one of the
form B-v —

~ p ~, so that the magnetic field is greatest
at the center of the vortex. In contrast, the magnetic
field for the Chem-Simons vortex is concentrated in a
ring surrounding the zero of the Higgs field, with its
maximum occurring when ~iii~ =v /2. Second, in the
Chem-Simons model equality of the Higgs- and gauge-
field masses is a necessary, but not suScient, condition
for obtaining a self-dual system.

For the Ginzburg-Landau model, index-theorem
methods can be used to show that any solution with topo-
logical charge n must depend on 2n continuous parame-
ters, which may be understood as the positions of n non-
interacting vortices. " The same methods can be used,
with only very minor changes, to count the number of
small perturbations which preserve the self-duality equa-
tions (12) and (13). One again finds that the general
solution contains 2n parameters.

This work was supported in part by the U.S. Depart-
ment of Energy under Contracts No. DE-AC02-
76ER03029 and No. DE-AC02-76-ER02271.

)Vote added. —After completing this work, we learned
that similar results have also been obtained by Hong,
Kim, and Pac. '
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