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Self-Dual Chern-Simons Vortices
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We study vortex solutions in an Abelian Chern-Simons theory with spontaneous symmetry breaking.
We show that for a specific choice of the Higgs potential the vortex satisfies a set of Bogomol’nyi-type,

or “self-duality,” equations.

PACS numbers: 11.15.—q, 11.17.+y, 74.65.+n

Charged planar matter interacting with “photons”
whose dynamics is governed not only by the Maxwell
Lagrange density — i F*'F,, but also by the Chern-
Simons term (x/4)e***F,,A, gives rise to topologically
massive (2+1)-dimensional “electrodynamics,” with
gauge-field equations

0, F"" + (x/2) e"*PF g =J" . ()]

Here, J#=(p,J) is the conserved matter current and our
Minkowski-space metric tensor 7,, is diag(1,—1,—1).
The time component of Eq. (1) is the Chern-Simons-
modified Gauss law

V-E—«xB=p, )

where Ei=F0=—4'-V,4° and B=—F'?=VxA.
Upon integration over the entire plane, this has the im-
portant consequence that any excitation with charge
Q=[d%p(t,r) also carries magnetic flux ®=fd?r
x B(z,r) given by

o=—(1/x)Q. 3)

The first term in Eq. (2) integrates to zero owing to the
long-distance damping effected by the “photon” mass
|k|: All gauge-invariant gauge-field quantities are
short range. For the same reason, the spatial integral of
B converges, but then it also follows necessarily that A is
long range, so that the spatial integral of VXA is
nonzero. Thus, charged systems also carry a vortexlike
magnetic field.'

While the normal particle content of the gauge-field
degrees of freedom is a single excitation with mass | x|,
this is modified by coupling to a U(I)-symmetry-
breaking scalar field. The gauge field then acquires two
propagating modes, with distinct masses differing by «.
Together with the Higgs-field degree of freedom, there
are three propagating excitations with different masses.2

When the symmetry is broken, there also exist classi-
cal vortex solutions.’ These are of the Nielsen-Olesen
varigty,4 except that they are charged, as required by Eq.
(3).

In this Letter we return to the problem of charged vor-
tices, but with gauge-field dynamics governed solely by
the Chern-Simons term.® This “Chern-Simons electro-

dynamics” may be viewed as the x— oo limit of the to-
pologically massive model, where the relation (3) holds
locally in space. The truncation is physically sensible at
large distances and low energies, where the lower-
derivative Chern-Simons term dominates the higher-
derivative Maxwell term. In this limit, and with the
symmetry-breaking realization, one of the two gauge-
field masses becomes infinite, so that the corresponding
particle decouples from the low-energy spectrum, leaving
one massive gauge degree of freedom as well as the
Higgs mode.” Not unexpectedly, a charged-vortex solu-
tion still exists.® Moreover, we show that for a specific
choice of the Higgs potential the vortex satisfies a set of
Bogomol’nyi-type, or “self-duality,” equations.
The Lagrange density for our model is

L=|D,0|*+ 1 xePrA,Fs,—V(|0]), (@)

where D,¢=(8,+ied,)9. We require that the Higgs
potential ¥ (|¢|) have a symmetry-breaking minimum
at |¢| =v and that it contain only renormalizable in-
teractions. If we further normalize so that V' (v) =0, the
potential must have the form

2
V(|¢|)=%[(|¢|2—v2)3+a2v2(|¢|2—v2)2]. (5)

When a?< 3, there is also a symmetric minimum at
¢ =0. For the asymmetric minimum to be a global mini-
mum we need a?= 1. The self-duality equations emerge
when A =2¢?%/| x| and a=1.

The theory possesses two propagating modes. In the
symmetry-breaking phase the Higgs mode has mass
my =hav?, while the gauge-field excitation carries mass
ma=2e%?/|x]|.

Here we are interested in time-independent vortex
solutions to the field equations that approach the asym-
metric vacuum at spatial infinity. These are stationary
points of the energy, which for static configurations may
be written as

E=[a*1|Dsl ~e24d |6+ xAB+V (191, (6)

where D=V —jeA. By varying with respect to Ao, we
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obtain the relation
K B

© 202 Jp2”
Since the charge density of a static configuration is
p=—2e240|¢|% Eq. (3) is recovered by integrating
both sides of (7) over all of space. A further relationship
involving the flux is obtained by noting that to have finite
energy D¢ must vanish at spatial infinity. If |¢| is non-
vanishing there, it then follows that asymptotically A
= —(i/e)VIng, and hence

€)

2nn

[ =
o=—Lf _ dI-Vine=221, 8)

where n is a topological invariant which takes only in-

|

E-fdzr[I(DliiD2)¢|2+

We thus have a lower bound on the energy

E=ev?|®| =2mv%|n|,

)

which is saturated by fields obeying the self-duality
equations

Di¢p=F+iDyo, (12)

2 2
=+ 19l (13)

,__Lw_ﬁJ
L)

v 1

where the upper (lower) sign corresponds to positive
(negative) values of ® and n.
If we define ¢ =vge'®, then Eq. (12) implies

eAiﬂ(V,-w_'te,-jleng). (14)
When substituted into Eq. (13), this gives
Viy=mZe*(e*—1), (15)

where y=Ing? This equation can also be obtained by
requiring that the positive, energylike functional®

6= a5 (V) + Emer—1)7]

be stationary.

Let us examine the solutions with axial symmetry, cor-
responding to |n| elementary vortices superimposed at
the origin. By appropriate gauge transformation, such
solutions can be brought into the form

(16)

o(r,0) =vg(r)e™,
eA'(r,0) =€,;(#7/r)la(r) —n].

a7
(18)

In order that the fields be nonsingular at the origin, we
must impose the boundary conditions g(0) =0 and a(0)
=n. The requirement that ¢ approach the asymmetric
vacuum at large distance implies g(eo) =1, while finite-

2
X o BF L0 (w2 |¢|»
2e K

teger values.

Substitution of (7) into our expression for the energy
yields

BZ
lol?

Variation of this gives a set of second-order static field
equations. We leave the analysis of these for elsewhere,
and specialize now to the case A =2¢%/x and a=1. With
this choice the Higgs- and gauge-field masses are equal,

2
K
E=fd2r[|D¢|2+F +v(lel)]|. )

my=my=2e%?|x|=m,

and the symmetric and asymmetric vacua are degen-
erate. The energy may then be rewritten, after an in-
tegration by parts, as

2
]ievzd). (10)

ness of the energy leads to a(eo) =0.

For configurations of this form, the magnetic field is
B = —a'/er (with the prime denoting differentiation with
respect to r) so that the flux is

2 2nn

Oo==L[q(0) —a(e)] =22 (19)
e e

as expected. The angular momentum is obtained from
the momentum density P via

J=farrexe
= — [ a*1Dop* rx Dy+ Dosrx (Dg)*]
= —fdzr(x/e)B[rxVArng) —erxAl

-(mc/ez)fdr(az)'
= —(nx/e®)n?, (20)

where Eq. (7) has been used on the third line.'°
Substitution of this Ansatz into Egs. (12) and (13)
gives

@n
(22)

g==xag/r,
alr=+ +mig2g?—1).

Since the solutions for n and —n are related by the
transformation g-— g, b— —b, we consider only the
case n>0. At large r, where §=1—g<«1, Egs. (21)
and (22) may then be approximated by the linear equa-
tions &'=—a/r and a'=—2m?%é6. The solution with

appropriate behavior at infinity is
g=1—CKo(mr), a=CmrK ,(mr). (23)

To find the behavior at small r, we attempt a power-
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series solution and obtain (for positive n)
43
2(2n+2)?

- —Az—*(mr) n+2 (24)
202n+2)

At 4n+2 dn+4
+ Snt2) (mr) +0((mr) ).

g=A(mr)"— (mr)"*t2+0((mr)>"t?),

a=n

The constant A is not determined by the behavior of the
fields near the origin, but is instead fixed by requiring the
proper behavior as r— oo, Thus, for a solution with A
too large, g reaches unity at some finite value r|, with
a(ry) > 0; for all r > ry, both g’ and a' are positive, with
g and a both growing without bound as r— oo, If, in-
stead, A is too small, a becomes negative, at some value
r, while g is still less than unity. For r > r,, both g' and
a' are negative and, asymptotically, g— 0 while a tends
toward a negative constant a.. The value of A4 separat-
ing these two regimes gives the vortex solution we seek.
To solve Egs. (21) and (22) numerically, we choose an
initial value of 4 and then integrate out from the origin
until either g>1 or ¢ <0. We then repeat the pro-
cedure with a new value of A, chosen to be larger or
smaller depending on which condition terminated the
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FIG. 1. The functions (a) a(r) and (b) g(r). The solid,
dashed, and dotted lines correspond to n=1, 2, and 3, respec-
tively.
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FIG. 2. The magnetic field (solid line) and the radial com-
ponent of the electric field (dashed line) for the n=1 solution,
in units of e/m?.

previous integration. By successive iteration of this pro-
cedure we find that 4 =0.3239, 0.0389, and 0.0029 for
n=1, 2, and 3, respectively,” and obtain the solutions
shown in Fig. 1. In Fig. 2 we plot the magnetic field and
the magnitude of the (purely radial) electric field for the
n=1 solution.

Similar self-duality equations arise in the four-
dimensional Ginzburg-Landau model with standard,
rather than Chern-Simons, electromagnetism when the
parameters are chosen to make the vector and scalar
masses equal (i.e., when the model describes a system on
the boundary between type-I and type-II superconduc-
tivity).'> Two differences should be noted. First, while
Eq. (12) still holds, Eq. (13) is replaced by one of the
form B~v?—|¢|?2 so that the magnetic field is greatest
at the center of the vortex. In contrast, the magnetic
field for the Chern-Simons vortex is concentrated in a
ring surrounding the zero of the Higgs field, with its
maximum occurring when |¢|?>=v2/2. Second, in the
Chern-Simons model equality of the Higgs- and gauge-
field masses is a necessary, but not sufficient, condition
for obtaining a self-dual system.

For the Ginzburg-Landau model, index-theorem
methods can be used to show that any solution with topo-
logical charge n must depend on 2n continuous parame-
ters, which may be understood as the positions of n non-
interacting vortices.'> The same methods can be used,
with only very minor changes, to count the number of
small perturbations which preserve the self-duality equa-
tions (12) and (13). One again finds that the general
solution contains 2n parameters.

This work was supported in part by the U.S. Depart-
ment of Energy under Contracts No. DE-ACO02-
76ER03029 and No. DE-ACO02-76-ER02271.

Note added.— After completing this work, we learned
that similar results have also been obtained by Hong,
Kim, and Pac. '



VOLUME 64, NUMBER 19

PHYSICAL REVIEW LETTERS

7 MAY 1990

@OQn sabbatical leave from Center for Theoretical Physics,
Laboratory for Nuclear Science and Department of Physics,
Massachusetts Institute of Technology, Cambridge, MA
02139.

IR. Jackiw and S. Templeton, Phys. Rev. D 23, 2291 (1981);
J. Schonfeld, Nucl. Phys. B185, 157 (1981); S. Deser, R.
Jackiw, and S. Templeton, Phys. Rev. Lett. 48, 975 (1982);
Ann. Phys. (N.Y.) 140, 372 (1982); 185, 406(E) (1988).

ZR. Pisarski and S. Rao, Phys. Rev. D 32, 2081 (1985); S.
Paul and A. Khare, Phys. Lett. 171B, 244 (1986).

3S. Paul and A. Khare, Phys. Lett. 174B, 420 (1986); Phys.
Lett. B 182, 414(E) (1986); L. Jacobs, A. Khare, C. Kumar,
and S. Paul, MIT Report No. CTP-1829, 1990 (to be pub-
lished).

4H. Nielsen and P. Olesen, Nucl. Phys. B61, 45 (1973).

5In the absence of the Chern-Simons term, scalar fields do
not support charged vortices [B. Julia and A. Zee, Phys. Rev.
D 11, 2227 (1975)). The possibility of a Chern-Simons term
shows that the prohibition of charged vortices is not absolute.
Indeed, even without the Chern-Simons term, a charged vortex
is formed when fermions couple to the system, since they bind
with zero energy to the neutral Nielsen-Olesen vortex (R.
Jackiw and P. Rossi, Nucl. Phys. B190 [FS3], 681 (1981)) and
the resulting composite is evidently charged. The relation of
these charged vortices to those arising in the presence of a

Chern-Simons term remains an open question. In this connec-
tion it is relevant to recall that the Chern-Simons term is in-
duced by virtual fermions.

8C. Hagen, Ann. Phys. (N.Y.) 157, 342 (1984); Phys. Rev.
D 31, 2135 (1985).

’S. Deser and Z. Yang, Mod. Phys. Lett. A 4, 2123 (1989).

8D. P. Jatkar and A. Khare, Institute of Physics, Bhu-
baneswar, Report No. IP/BBSR/89-27, 1989 (to be published).

9The integrand of & diverges at the center of the vortex and
& is infinite. Therefore, the usual scaling arguments for the
nonexistence of soliton solutions in two-dimensional scalar field
theories do not apply.

10Elementary excitations give rise to angular momentum with
opposite sign; see, €.g., G. Dunne, R. Jackiw, and C. Trugen-
berger, Ann. Phys. (N.Y.) 194, 197 (1989).

I'We thank L. Hua for pointing out an error in our first eval-
uation of these.

12E, B. Bogomol’nyi, Yad. Fiz. 24, 861 (1976) [Sov. J. Nucl.
Phys. 24, 449 (1976)]; H. deVega and F. Schaposnik, Phys.
Rev. D 14, 1100 (1976); L. Jacobs and C. Rebbi, Phys. Rev. B
19, 4486 (1978).

13E. Weinberg, Phys. Rev. D 19, 3008 (1979).

14]. Hong, Y. Kim, and P. Y. Rac, preceding Letter, Phys.
Rev. Lett. 64, 2230 (1990).

2237



