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Time-Dependent Solutions of 2+ 1 Gravity
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Time-dependent solutions of 2+ 1 gravity are found for 1V particles on a sphere with g handles. The
theory is reduced to a constrained Hamiltonian system with a finite number of global observables. These
include three-vectors that give the spacetime position of each particle, and others that are related to the
Teichmuller parameters. With these global observables, the dynamical equations (d'x'/dt'=0) decou-
ple. The cases of the torus and a uniformly expanding sphere with Ã sources are shown to agree with

solutions from the metric formulation.

PACS numbers: 04.20.3b, 02.40.+m, 11.15.Ha

The formulation of 2+1 gravity in terms of a metric
tensor field is known to be highly uneconomical, in the
sense that of the continuous infinity of variables only a
finite number are coordinate independent. Partly be-
cause of this, a large class of solutions of 2+1 gravity
have yet to be found, particularly nonstatic spacetimes
with spacelike slices of genus g~ 2. In an elegant pa-
per, Witten suggested using instead a formulation of
gravity on a reduced phase space which involves only
coordinate-independent variables, identified the phase
space as the moduli space of flat Poincare connections,
and ofl'ered some insights into its quantization.

The purpose of this Letter is to provide a set of vari-
ables for the phase space, a Hamiltonian, and solutions
of the dynamical equations (a paper by Moncrief based
on the metric formulation provides a proof of existence,
uniqueness, and smoothness of the Hamiltonian, and
gives the Hamiltonian explicitly in the case of the torus,
recovering in that case previous results by Martinec ).
Further results, calculations, and proofs are postponed to
a forthcoming publication.

A lattice theory for 2+1 gravity with continuous time
was developed by the author; the phase-space variables
are the link three-vectors expressed in local Minkowski-
an frames, and Lorentz matrices defining parallel trans-
port between neighboring frames. The time evolution
and gauge symmetries are generated by first-class con-
straints. These require that the curvature at each vacant
lattice site vanish, relate the deficit angle at occupied
sites to the mass of each particle, and require that the
link vectors form closed faces. They act on the phase-
space variables as generators of three-translations of
each latticed site, translations of each particle along its
world line, and Lorentz transformations of each frame.

The physical phase space is the set of solutions of
the constraints modulo gauge transformations. A gauge-
fixing procedure leads to a reduced system with

12g+6N phase-space variables and 6+N constraints
(this leaves 12g —12+4N observable phase-space vari-
ables; 4N to give the position and momentum of each
particle on the surface, and 12g —12 to parametrize the

moduli space of flat Poincare connections). Only one
Minkowskian frame is kept, and all vacant lattice sites
are translated to the same point which will be referred to
as "the observer. " The remaining constraints generate
Poincare transformations of the observer and his frame,
and translations of each particle along its world line.

The variables and constraints of the reduced system
are best understood in terms of an imaginary toy. Con-
sider a genus-g surface with N points to represent the
sources and one more point (0) that will be the observer.
A two-dimensional boy who lives on this surface has just
received a two-dimensional balloon for his birthday. He
blows in his balloon, and blows, and blows, until finally
he can blow no more. The balloon has wrapped itself
around the surface, getting stuck at each of the N+ 1

points, until all of the "volume" of space is inside (Fig.
1). Note that the inside of the balloon has a topology of
a disk, so it is simply connected. Now, since in 2+1
gravity the curvature tensor vanishes, any vector which is
parallel-transported around a contractible loop will re-
turn unchanged, so spacetime within that region is flat.
In other words the inside of the balloon as it evolves in

time cuts a tube out of Minkowski space (Fig. 2). The
adjacent segments of the balloon in Fig. 1 correspond to
segments on the boundary of the Minkowskian tube that
should be identified.

(b)

FIG. 1. Maximal disk for (a) the sphere with four particles
and (b) the torus. The shaded area is the inside of the "bal-
loon;" the white area shrinks to zero when the balloon is fully
blown.
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variables are expressed. If one takes a fixed observer and
a nonrotating frame, the Hamiltonian becomes simply
H P +Q„N(p)H(p). Since the brackets of M's
among themselves vanish and the Hamiltonian in this
gauge depends only on M(p), these are constants of the
motion. Also, (d/dt)E'(p) [HE'(p)] is a function of
M's only, so the vectors E'(p) have zero acceleration:

(d'/dt ')E'(p) =0. (7)
FIG. 2. "Minkowskian tube" representation of spacetime

for (a) the sphere with four particles and (b) the torus. Ar-
rows indicate which edges are identified.

[E'(p),E (bp)] -e"E,(p),
[Ea(tt),M', (p)] -e" Mg, (p),
[Ea( tt) Mb (p)] Mb (p)e.ad

constraints,

(2)

(3)

J =g[E (&)+E ( —
t )]=0,

(p)

pa &ab~ gM(&) —0
,(p), cb

H(p) 3 —Tr[M (p)]+4sin [8xGtn(p)] =0. (6)

(5)

The order in which the 2g +N matrices in (5) are multi-

plied is obtained from Fig. 1 by drawing a loop around
the observer and taking the product of Lorentz matrices
as the loop crosses each pair of matched segments.

The brackets of the constraints in Eqs. (4)-(6) have
the algebra of the Poincare group. The constraints J'
act on the variables E(p) and M(p) as generators of
SQ(2, 1) transformations. The action of the translation
generators depends on the order of the matrices in (5);
note that time evolution is encoded in these constraints
since they generate translations of the observer also in

the time direction. In general, the Hamiltonian is a
linear combination of the constraints with arbitrary pa-
rameters which reflect the freedom to choose freely the
position of the observer on the surface, the time parame-
ters, and the orientation of the 2+1 frame in which the

The gauge-fixed lattice theory leads to precisely this
picture, where the segments are represented by three-
vectors [the remnants of the link vectors E'(ij) and
E'(ji) of the lattice theory]. Two segments which need
to be identified are related by a Lorentz transformation
M; this corresponds (Fig. 1) to parallel transporting
across the pair of adjacent segments [M'bE (ji)

E'(ij)]—. The constraints are that the curvature at
the observer (0) vanishes, that the mass of each particle
is a given function of the deficit angle, and that the bal-
loon does not rip, hence the following reduced system

[p 1, . . . , 2g +N; —M(p)E(p) is identified with

E( —tt); the brackets are inherited from the lattice
theory]: phase space,

The spacetime corresponding to this solution is a tube
cut out of Minkowski space by a one-parameter family
of polygons (the two-dimensional balloon at various
times), with the edges identified two by two and such
that the corners of the polygon lie on straight world lines

(Fig. 2). The fact that the world lines must be straight
can be understood, in a handwaving manner, by the fact
that the spacetime curvature must vanish everywhere but
at the sources. It clearly vanishes inside the "Min-
kowskian tube;" the requirement that spacetime is flat
also at the edges can be satisfied only if the walls form-

ing the boundary of the tube are flat.
Some aspects of these spacetimes tend to hide in the

Minkowskian tube picture and should be pointed out.
For instance, the velocities dE(p)/dt are not all indepen-
dent sinced they are given by the brackets with the Ham-
iltonian in terms of the constrained matrices M(p).
Also the "constant-time" slice given by the three-vectors
E(p) is generally not planar —insisting that these sur-
faces be planar is not a choice of gauge, but a severe re-
striction on the matrices M(p), or on the velocities
d E(p )/dt.

Writing the solution in the form g;J(t) requires filling
each polygon with a surface, picking coordinates on that
surface [x'(p', p2)], and computing the metric g~ rt, b

x (8x'/r) p') (8xb/r) p')
Before turning to specific examples, the stage is now

set to discuss the validity of this reduced system for con-
tinuum 2+1 gravity. A first point is that the reduced
system [(1)-(6)] is completely independent of the num-

ber of points in the original lattice. Consequently, a
renormalization-group transformation for the lattice
theory can be found which cuts the link lengths by half
at each step and leaves the reduced system unchanged.
Furthermore, in the limit of very small links the action
from which the lattice theory can be derived becomes the
Chem-Simons action for 2+1 gravity, and the lattice ac-
tion is a C function of the link variables. Third, the
number of observables (6g —6+2N) is the same as for
continuum 2+1 gravity, and the solutions are C func-
tions of time. These facts (reduced system invariant un-

der the renormalization-group, uv limit = continuum ac-
tion, C action and dynamical behavior, and same num-
ber of solutions) are sufficient to prove that the solutions
of 2+1 gravity are solutions of the lattice theory and
vice versa.

The variables of the reduced system can be expressed
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in terms of their continuum counterparts. The matrices
M(p) are the Wilson-loop matrices which define parallel
transport around the a loops and b loops of the surface,
and around the pointlike sources. The vectors E(p) are
path integrals of the dreibein around the b loops and a
loops, respectively, and along paths that connect the ob-
server to the various pointlike sources,

—E (2)Mb'(2) =0, (9)

E'(p) - e ds'. (8)~(p) '

(The index a is parallel-transported back to the observer
along the path. ) An important role of the lattice theory
is to provide a "regularization" of the brackets [E'(p),
E'(p)].

The torus is a somewhat peculiar case. The reduced
system is described by a pair of vectors and matrices cor-
responding to the two noncontractible loops. The con-
straints are

Ja Ea(1) Eb(1 )~t, a(1) +Ea(2)

nates in terms of which the metric is spatially constant
makes it straightforward to solve Einstein's equations
directly. Taking, for instance, the metric ds = —dt

+g~ ~(t)dx +g22(t)dy, one finds that the Riemann ten-
sor vanishes if g~(t) =(a+bt) and g22 is a constant, or
vice versa. This solution agrees with (11) if A(1) is

parallel to 8(1) and B(2)=0; the conditions on A(p),
B(p) are required by the constraints (9) and (10) to-
gether with the condition g~2 =0.

Higher-genus surfaces do not admit a globally defined,
constant metric, so the traditional approach becomes
rather difficult. Perhaps the main result of this paper is

that one should not interpret this difficulty as a sign that
the dynamics become tremendously complicated for the
higher-genus case, but rather that the metric variables
become tremendously inconvenient.

Turning now to the sphere with N massive particles,
the vectors E(p) indicate the spacetime position of each
particle [Fig. 1(a)]. Each matrix gives the Lorentz
transformation which is necessary to match the identified

edges, and the constraints are

P' e' '[M(1)M(2)M '(1)M '(2)],b =0, (10) J'=gE'(p) E'(p)M—b'(p) =0, (12)

where M(1) is the Wilson-loop matrix for the b loop
which intersects the a loop corresponding to E(1), etc.
The translation constraints are equivalent to the require-
ment that M(1) and M(2) commute, i.e., that their "ro-
tation vectors" be parallel; this is only two independent
conditions. There is also a redundancy among the con-
straints (9), which is that J' is automatically orthogonal
to the rotation vector. Thus of the six constraints only
four are independent, and the number of degrees of free-
dom is 6 —4 2 (the dimension of Teichmiiller space).

A solution of 2+ 1 gravity with spacelike slices having
the topology of a torus is represented in Fig. 2(b). Each
spacelike slice of this spacetime can be chosen to be a
pair of triangles combining to form a four-edged surface
in Minkowski space. To find a convenient pair of coordi-
nates for this surface, consider the length-preserving map
from the two-triangle surface to a parallelogram in R
with opposite edges identified, which can in turn be
mapped with a linear transformation into a square with
two coordinates (p', p ) ranging from zero to 2z. The
metric for these coordinates is given in terms of the
lengths l(1),1(2) of the two vectors E(1),E(2) and their
scalar product s(12) as follows: g~~ =1 (1)/(2tr), g~2
=s(12)/(2tr), etc. (To obtain the Teichmiiller parame-
ters, one may choose a gauge where the figure is a paral-
lelogram of unit height; this generally requires having a
moving observer, or nonzero "shift function. " )

The solution of the dynamical equations, E(p) =A(p)
+8 (p )t, leads to quadratic functions of time for g;, (t),
for instance,

g„=[A (1)+A(1) .8(l ) t +8 (1)t ]/(2n) . (11)

The fact that the torus admits globally defined coordi-

P' e' '[M(1)M(2)M(3) M(N)], b =0, (13)

H(p) 3 —Tr[M (p)]+4sin [8zGm(p)] =0. (14)

The solution is the spacetime corresponding to a tube
cut out of Minkowski space by 2N-sided polygons with

adjacent sides identified two by two [Fig. 2(a)]. This de-
scribes the motion of N massive particles as straight
world lines with a three-velocity parallel to P'(p) [the
constraint (14) is P (p)+ =0 and P'(p) generates
translations of the point p]. Note that the polygon in

Fig. 1(a) can be planar only when the "rotations" M(p)
all have the same axis, in which case the particles' world
lines are parallel.

There is no complete time-dependent solution for this
problem already available in the literature; however, it is
a straightforward task to introduce a time dependence in

the static solution of Deser, Jackiw, and 't Hooft. One
finds

ds —dt ++~r —r„~ "(1+ t) (dx +dy ).(15)
(p)

This is a uniformly expanding universe, where the geo-
desic distance between any two particles is a linear func-
tion of time. In the notation of this paper, this spacetime
would be described by a Minkowskian tube with con-
stant-time slices which are regular polygons, marked by
2% corners which lie on straight world lines diverging
from a common origin.

To summarize, a new class of time-dependent solu-
tions of 2+1 gravity with nontrivial topology has been
presented. A key step is the use of a lattice theory to
provide brackets for the global variables E'(p) =Je
xds', for which the dynamical equations decouple. The
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validity of the lattice approach is justified by the fact
that the reduced system is independent of how fine the
lattice is, and that in the limit of very small links the lat-
tice theory becomes ordinary 2+1 gravity.

It is, in principle, possible to put a solution in the form
of a Lorentzian metric on the chosen manifold. The
principal difficulty in doing so resides in finding a con-
venient set of coordinates for each spatial slice such that
the matching conditions are time independent. Given
such coordinates and a time parameter, one expresses
them in terms of the coordinates x,y, t of the Min-
kowskian tube and computes the Lorentzian metric from
the Minkowski metric with a coordinate change; the cur-
vature tensor is zero by construction.

The solutions presented in this paper can be used to
generate solutions of 3+1 gravity by adding a trivial
fourth dimension to any of the spacetimes above, leading
to a spacetime M x R which automatically solves
Einstein's equations since the curvature tensor vanishes

everywhere except at the sources (which have become
cosmic strings ).

Among many points which have not been addressed in

this Letter are the following. (I) One should require
that the variables E(p) describe a spacelike surface;
however, depending on the initial velocities part of the
surface may become lightlike in a finite amount of time,

at which point the solution becomes unphysical [and
det(g) 0]. (2) The Minkowskian tube picture breaks
down when a corner is on a collision course with one of
the walls; this requires switching to a new set of variables
where the observer is linked to the various particles via
different paths. (3) How would astronomers notice if
spacetime did in fact have regions that are sufficiently
close to the form M XR for the solutions described in

this paper to apply?
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