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New Class of Inhomogeneous Cosmological Perfect-Fluid Solutions without Big-Bang Singularity
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A new class of exact solutions to Einstein’s field equations with a perfect-fluid source is presented.
The solutions describe spatially inhomogeneous cosmological models and have a realistic equation of
state p =p/3. The properties of the solutions are discussed. The most remarkable feature is the absence
of an initial singularity, the curvature and matter invariants being regular and smooth everywhere. We
also present an alternative interpretation of the solution as a globally regular cylindrically symmetric

space-time.

PACS numbers: 04.20.Jb, 98.80.Dr

The fact that our Universe is not exactly spatially
homogeneous and the lack of reasons to believe that it
was so at early times, together with the desire to avoid
postulating very special initial conditions, leads to the
study of exact spatially inhomogeneous cosmological
solutions. It is widely believed, however, and the singu-
larity theorems' seem to indicate so, that inhomogeneous
models originate in an initial big-bang singularity just as
homogeneous (Bianchi) or standard Friedman-Robert-
son-Walker models do.

The history of inhomogeneous cosmological solutions
has reinforced this belief. The first class of solutions of
this type with a realistic equation of state p=yp (0 <y
< 1) was discovered by Wainwright and Goode? and has
an initial big-bang singularity in the finite past. Fein-
stein and Senovilla® recently found a new solution with
equation of state p =p/3 and, again, a big-bang singular-
ity in the past. Hitherto, the solutions in Refs. 2 and 3
were the only known solutions of this type with realistic
equations of state.

In this Letter, we present a new class of spatially inho-
mogeneous cosmological models which generalizes the
solution of Ref. 3. However, by choosing the parameters
adequately, the solutions do not present any big-bang
singularity either in the past or in the future. Before dis-
cussing this surprising property, we proceed to show the
solutions.

The existence of two spacelike commuting Killing vec-
tors 8/dy and 9/dz, which are hypersurface orthogonal
and orthogonal to each other, is assumed. The line ele-
ment then takes the form

ds’=e¥Y(—dt*+dx?)+G(gdy*+q ~'dz?), (1)

where G, ¢, and f depend on ¢ and x. Explicitly, we have
found the solution given by

e/ =[AC(at) +BS(at)1*C(3ax) ,
G =[4C(ar) +BS(ar)1S(Bax)C ~**(3ax) , )
g=I[AC(at) +BS(at)13S(3ax) ,

where
S(u)=sinh(u), C(u)=cosh(u), 3)

and a, A, and B are arbitrary constants. Feinstein and
Senovilla’s solution® is the particular case 4 =0 of the
previous metric.

The velocity of the fluid is

u=—eldt 4)

and the pressure and energy density have the following
expressions:

xp=5a’lAC(at)+BS(at)] ~*C ~*3ax), p=3p, (5)

where y is the gravitational constant. From (5) we learn
that the equation of state is realistic for hot radiation-
dominated epochs. We also see that both pressure and
density are positive everywhere; therefore, the energy
conditions are satisfied. But most important is the fact
that p and p are finite and well behaved for any possible
value the coordinates can take as long as

A*>B?. (6)
Then, we take the range of the coordinates to be
—o<t,x,y,z <00, @)

It is obvious that making the transformation r— ¢
+const, we can always set B =0 whenever the condition
(6) is satisfied. On the other hand, if (6) is not verified
(that is, B>= A4?), it is possible to set 4 =0 by means of
a similar transformation. Thus, there are only two
essentially different solutions in our family, that of Fein-
stein and Senovilla} (4 =0) and the case B=0. From
now on we assume

B=0 (8
and, by rescaling, we set
A=1, )

so that the metric functions (2) and the density and pres-
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sure (5) should be rewritten appropriately using (8) and
9.

Keeping this in mind, in order to see if the solution has
any curvature singularity, we first calculate the com-
ponents of the Weyl tensor in the natural null tetrad of
the metric (see Ref. 3). These are

¥o=13a*[CQat)C(Bax)+S(2at)S (3ax)]

xC ~%(at)C "3 (3ax)
¥,=a?lCQat) —S*(Bax)1C ~%(at)C ~*(3ax) , (10)
¥, =3a%[CQar)C(3ax) —Sat)S(3ax)]

xC ~%ar)C ~*(ax) ,

so that it is easily seen that the Weyl tensor is of Petrov
type . Obviously, the ¥’s are regular everywhere. Tak-
ing into account that the Weyl and Ricci invariants are
expressed in terms of the ¥’s and p and p (see Ref. 2),
one can further show that all the curvature invariants
are regular over the whole space-time.

The hypersurface x =0 is special in the sense that the
Weyl tensor is of Petrov type D there. The vanishing of
the determinant of the metric at this hypersurface corre-
sponds merely to a coordinate singularity, since all the
invariants are finite at x =0. The metric exhibits also
the discrete symmetry x — — x.

As is well known, the rotation of the fluid in this type
of model vanishes identically. The only nonzero com-
ponents of the acceleration, expansion, and shear of the
fluid for the solution are

a,=—3aSBax)C "*at)C ~*(3ax) ,

0=3aS(at)C 3(at)C ~'(ax),
(11)

033=—20|=—20pn
=2aS(at)C "*(ar)C ~'(3ax) ,

where all the components have been computed in the
natural orthonormal tetrad of the metric (see Ref. 3).
As we can see, all the kinematical quantities are regular
everywhere. The three slices orthogonal to the fluid flow
are not conformally flat, and their intrinsic properties are
just the same as those of the solution in Ref. 3.

From expressions (5), (10), and (11), it follows that
as t — — oo the solution tends to a nearly flat space-time,
with all the kinematical quantities, as well as the Weyl
tensor and the density and pressure, going to zero. From
there, as ¢ increases, the fluid starts to contract and, of
course, the density increases. In this period, there is a
positive shear in the x and y directions, while the shear
in the z direction is negative. This occurs until =0,
where the expansion and shear vanish and the density
reaches its maximum value for each x. However, at this
instant, as it happens over the whole history of the solu-
tion, the fluid is accelerated in the x direction, the ac-
celeration being positive for x <0, negative for x >0,
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and vanishing at the hypersurface x =0. From then on,
as ¢ continues to increase, the solution undergoes an ex-
pansion epoch, and the density decreases. The shear
properties are now reversed with respect to the contract-
ing epoch. Finally, as t— oo, the solution approaches a
similar nearly flat space-time as that of r— —oo. We
thus complete a cycle of contraction and expansion
which, of course, could be made periodic. It is also obvi-
ous that we could reverse the history of the solution by
simply changing the sign of .

The most intriguing fact of the solution is the com-
plete absence of a spacelike singularity from which the
Universe originated (i.e., a big-bang singularity). This
property does not, in principle, contradict the powerful
singularity theorems (see Ref. 1), since they only estab-
lish that some timelike or null geodesic is incomplete.
Whether or not our solution has this property is not
clear, since, for example, the region x =0 could have
some pathological behavior. But, in any case, this would
only mean that there exist some isolated singularities
which are of no importance for the evolution of our mod-
el, especially because the fluid congruence itself does not
find any singularity at all. Our model, therefore, having
a realistic equation of state and satisfying the energy
conditions, seems to indicate that the singularity
theorems do not rule out completely the possibility of
universes without a beginning (without a big-bang singu-
larity). Thus, we see that the introduction of inhomo-
geneities in the Universe should somehow change our
current views on the subject. The solution presented
here is a very simple model in the sense that it has only a
one-dimensional inhomogeneity. It is necessary to study
more general inhomogeneous solutions to reach a clear
answer.

Finally, we give an alternative interpretation of our
solution. The properties of the x =0 hypersurface give
rise to the idea of changing the topology of the coordi-
nates so that x becomes a cylindrical radial coordinate.
We can certainly do so and by renaming the coordinates
as x =r and y =¢, and choosing the constants appropri-
ately, the line element becomes

ds?=C*at)C*Bar)(—dt?*+dr?)
+(1/9a2)C*(at)S*(3ar)C ~**(3ar)de*?
+C " 2at)C ~*Bar)dz?. 12)

With this choice of the constants, the regularity condi-
tion on the axis r =0 is automatically satisfied and the
2r periodicity of the coordinate ¢ is well defined. We
can thus take the range of the coordinates to be

—o<Lt,z<00 0<r<o, 0<¢<2r.

As is apparent, (12) is a globally regular cylindrically
symmetric space-time, thus reinforcing the arguments of
the previous paragraph. The question of how our solu-
tions fit in with the general conclusions of the singularity
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theorems is under current consideration, and we hope to
report on whether or not they are geodesically complete
(and why) shortly.

All the quantities appearing in the Letter have been
calculated by using the algebraic computing programs
CLASSI and REDUCE.
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