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"Quantum" Chaos in Billiards Studied by Microwave Absorption
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The eigenfrequencies of resonance cavities shaped as stadium or Sinai billiards are determined by mi-

crowave absorption. In the applied frequency range 0-18.74 GHz the used cavities can be considered as
two dimensional. For this case quantum-mechanical and electromagnetic boundary conditions are
equivalent, and the resonance spectrum of the cavity is, if properly normalized, identical with the
quantum-mechanical eigenvalue spectrum. Spectra, containing up to a thousand eigenfrequencies, are
obtained within minutes. Statistical properties of the spectra as well as their correlation with classical
periodic orbits are discussed.

PACS numbers: 05.45.+b

The statistical properties of the eigenvalue spectrum of
a Hamiltonian of a quantum system change in a charac-
teristic way if the corresponding classical system shows a
transition from integrable to nonintegrable behavior.
Whereas in integrable systems for the distribution of en-

ergy differences of successive eigenenergies Poisson
statistics is observed, the spectra of nonintegrable sys-
tems obey Wigner statistics. Experimentally, Wigner
statistics were already observed many years ago in the
spectra of highly excited nuclei, ' a very recent example
is given by the optical fluorescence spectra of N02 mole-
cules. Intense theoretical studies exist for the periodical-
ly kicked top, " nonlinearly coupled oscillators, 6 and
billiards of different shapes. ' Pechukas and Yukawa'
showed that the strength of the nonintegrable part of the
Hamiltonian may be interpreted as a pseudotime. As a
function of this "time, " the eigenenergies move on the
energy axis in a similar way as the particles of an in-

teracting one-dimensional gas.
An alternative approach to the understanding of the

statistics of eigenvalues is opened by the semiclassical
approximation. Gutzwiller'' showed that the density of
eigenvalues p(E) can be decomposed into a monotonic
and an oscillatory part,

p(E) =po(E)+gp„cos[(I/h)S„—y„l (I)

(see also Ref. 12 for a review). In the case of two-

dimensional billiards, the monotonic part po(E) is given
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where A is the area and L is the circumference of the bil-
liard (the units were chosen such that h /2m =1, i.e.,
E k, where k is the de Broglie wave number of the
particle). The oscillatory part of p(E) in Eq. (1) is a
sum over all classical periodic orbits y. 5„is the classical
action for the orbit. The prefactor p„and the phase p„
can be calculated within the frame of the semiclassical
approximation. If the action S„ is proportional to a
power of E, then the contributions from the different
periodic orbits to p(E) can be obtained by a Fourier
transformation of the spectrum as was demonstrated by
Wintgen. ' The classical periodic orbits show further up
in so-called "scars, " regions of extra high amplitudes of
some eigenfunctions in the neighborhood of periodic or-

15, 16

Calculations of eigenvalues of nonintegrable Hamil-
tonians are extremely time consuming even on modern
computers. Probably for this reason in all publications
mentioned above the total number of eigenvalues calcu-
lated for one system was of the order of at most several
hundred. Parameter dependences have been studied only
over very limited regions. In billiards only two-
dimensional systems have been studied up to now. Infor-
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mation on the eigenfunctions is even more scarce.
It is shown in this Letter that even in a time of rapidly

growing computer capabilities an experimental approach
to the problem may be an attractive alternative. Our ex-
periment uses the fact that the time-independent
Schrodinger equation and the wave equation are
mathematically equivalent (apart from the boundary
conditions which may be difl'erent). The billiards are
substituted by suitably shaped resonators, whose eigen-
frequencies are measured. There are several alternatives
for an experimental realization, such as vibrating plates,
optical resonators, and microwave resonators. Several
authors' ' proposed the use of optical waveguides to
simulate kicked quantum systems. For the simulation of
billiards the use of microwave cavities seemed most
promising to us for the following reasons: (i) Microwave
generators for a wide frequency range in the GHz region
and network analyzers for the registration of eigenfre-
quencies are commercially available, (ii) the construc-
tion of cavities with sizes in the cm range is easy and
inexpensive, and (iii) it is no problem to obtain resonator
qualities Q of the order of several thousands. With a
somewhat greater effort even qualities of several ten
thousands are obtainable. Interestingly enough, the
same approach was used already 35 years ago to mimic
the acoustic properties of rooms with the help of mi-
crowave cavities. '

The resonator quality Q in a frequency range of in-

terest is defined as Q v/hv, where v is an eigenfrequen-
cy in that range and hv is its typical width. The main
cause for the width is the loss of microwave energy in the
walls of the resonator due to the skin eff'ect. For mi-
crowave frequencies of about 10 GHz typical skin depths
for a good metallic conductor such as brass, which was
used in the present experiments, are of the order of 1.5
pm. Two successive eigenfrequencies can just be
resolved, if they are separated by at least Av. A simple
calculation shows that the total number of eigenfrequen-
cies which can be registered is of the order of Q.

In our experiments we use a Hewlett-Packard mi-
crowave generator HP 8350 B together with a scalar net-
work analyzer HP 8757 A. The frequency could be
varied between 0.01 and 26.5 GHz. The microwaves
were transmitted to the resonator through a microwave
cable; the reflected microwave power was measured as a
function of frequency. Figure 1 shows part of a
reflection spectrum for a stadium-shaped resonator. A
spectrum as shown in Fig. 1 is registered within seconds.
Typical times to measure a spectrum over the full fre-
quency range including signal averaging and data
transfer to an attached computer amount to about half
an hour. In all resonators the top and the bottom face
were parallel to each other with a distance of d =8 mm.
Thus for frequencies v( v,„=c/2d=18.74 GHz the
resonator can be considered as two dimensional. In all
measurements described below only frequencies with
v( v „. „were taken into account. In general, diferent
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FIG. 1. Part of the spectrum of a stadium billiard (b-20
cm, I 36 cm). It was obtained by measuring the reflected mi-
crowave power as a function of the microwave frequency.
Each resonance corresponds to an eigenfrequency of the bil-
liard.

boundary conditions apply to quantum-mechanical and
electromagnetic systems, respectively. Whereas in the
quantum-mechanical case the wave function y must be
zero at the boundary, in the electromagnetic case the
tangential component E„„sof the electric field and the
normal component B„„ofthe magnetic induction must
vanish at the boundary. For frequencies below v, „only
transverse magnetic modes are possible. Therefore in

two-dimensional billiards the electromagnetic boundary
conditions reduce to a single one, E, =0 on the bound-

ary, where z is the direction perpendicular to the top and
bottom faces of the resonator. Thus in the two-
dimensional case quantum-mechanical and electromag-
netic boundary conditions become identical, if one
identifies y with E, . Strictly speaking, E„„sis not ex-

actly zero on the boundary because of the finite conduc-
tivity of the walls. This penetration of the electric field

into the walls is the cause for the broadening of reso-
nance lines and for the limited quality, as discussed
above.

In the following we concentrate on one typical mea-
surement for a Sinai billiard, rectangularly shaped with

an excised quarter circle at one of the corners (see inset
of Fig. 3). A total of 1002 eigenvalues was registered in

the frequency range 1-18 GHz. It should be noted that
in earlier calculations such as in Ref. 8 the total number
of eigenvalues was only several hundred, even if the data
of difl'erent billiards were combined. From the monoton-
ic part po(E) of the density of eigenvalues [see Eq. (2)]
one would expect 1178 eigenvalues in the frequency
range mentioned above. The loss of about 15% has two
causes. First, the smallest distance which can be
resolved because of the limited quality is about 3 MHz.
This leads to a loss especially at small spacings, with in-

creasing tendency at higher frequencies. Second, an ei-
genvalue may be overlooked in the reflection spectrum if
the point where the microwave is coupled to the resona-
tor is near a node of the eigenfunction (the depths of the



VOLUME 64, NUMBER 19 PHYSICAL REVIEW LETTERS 7 MAY 1990

1..0 I I I I
l

f I I h
1

I I 1

tp,

lf) 0 5
CL

pp 30

0.0 '- '

0.0 1.0 2.0 3.0 0.0

1

Qi

]

1.0
1/m

2.0

FIG. 2. Histogram for the distances s between successive
eigenenergies for the Sinai billiard shown in the inset of Fig. 3.
The dotted line corresponds to a Wigner distribution. Inset:
The histogram of eigenfrequency distances for the rectangular
billiard of the same size as the Sinai billiard. Now a Poisson
distribution is observed. For the loss of eigenfrequencies at low

distances see text.

resonances in Fig. 1 are proportional to the square of the
amplitude of the microwaves at the point of coupling).

Figure 2 shows the histogram of the distribution of
distances of successive eigenenergies s„=E„E„)for a-
Sinai billiard. The "energy" is defined by E k, and as
in the quantum-mechanical analog, it is not the photon
energy; k 2nv/e is the wave number of the microwave
frequency. The abscissa of the figure is normalized to
the mean distance s 1. The dotted line corresponds to
a Wigner distribution

p(s) —,
' xsexp( —

—,
' zs ) . (3)

p(L) =+exp(ik„L), (4)

where the sum is over all eigenfrequencies, should show
resonances at all L values corresponding to lengths of
classical periodic orbits [see Eq. (1)]. Figure 3 shows

The loss of eigenvalues at small distances mentioned
above affects the lowest histogram value only. The inset
of Fig. 2 shows the histogram of the distribution of
eigenenergy distances for a rectangular billiard of the
same size as the Sinai billiard. Now a Poisson distribu-
tion is observed, as it is expected for an integrable sys-
tem. In this case only the 314 eigenfrequencies below 11
GHz were taken into account. For higher frequencies
the spectrum showed more and more irregular behavior
because of mechanical imperfections of the resonator.

Equation (1) shows that there is a close correspon-
dence between eigenvalues and classical periodic orbits.
For billiards the determination of periodic orbits is ex-
tremely simple, as only the laws of geometrical optics
have to be obeyed. For the action of one special orbit
one obtains S„=hkL„, where L„ is the length of the or-
bit. Therefore the Fourier transform of the density of ei-
genvalues, with k as the variable, i.e.,

FIG. 3. Fourier transform of the spectrum of the Sinai bil-
liard shown in the inset (a 56 cm, b 20 cm, r 7 cm). The
dot in the inset denotes the point where the microwaves were
coupled to the resonator. Each resonance in the Fourier trans-
form corresponds to a classical periodic orbit.

r p(L) r
for the same Sinai billiard as above. The bil-

liard is shown in the inset of the figure, together with
some elementary periodic orbits. A great number of res-
onances is seen. All of them could be attributed to clas-
sical periodic orbits. The resonances corresponding to
the orbits sho~n in the inset are marked by numbers.
For the "bouncing-ball" orbit 1 also higher-order reso-
nances corresponding to multiple orbits are seen.

The fact that eigenfrequencies can be determined in

very short times makes it possible to determine spectra
for a large number of billiards with varying irregularity
parameter. This is particularly simple for the stadium
billiard. We varied the length I of the billiard shown in
the inset of Fig. 1 between I 0 and 5 cm. A small part
of the spectra is shown in Fig. 4. First, one observes an
overall decrease of eigenfrequencies with increasing
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FIG. 4. Part of the spectra of different stadium billiards.
The width of the billiard was fixed to b 20 cm, the length I
varied between 0 and 5 cm (see inset of Fig. l). The periodic
structures marked by arrows are due to eigenfrequencies asso-
ciated with the "bouncing-ball" orbit.
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length. This is a consequence of the fact that p(E) is

asymptotically proportional to the area of the billiard
[see Eq. (2)]. The most conspicuous features of Fig. 4,
however, are the regular patterns, marked by arrows at
the upper margin of the figure. The distance of the fre-
quency markers of b, v=0.75 GHz corresponds to a
length of hl =c/Av =40 cm. This is exactly the length of
the bouncing-ball orbit. The eigenfrequencies making up
the periodic pattern therefore correspond to standing
waves with node lines parallel to /. A somewhat more
careful inspection of Fig. 4 shows that there are at least
two further periodic patterns, with the same period
length hv, but with slopes differing from the slope of the
pattern discussed above. The corresponding frequencies,
too, must correspond to standing waves between the two

long sides of the billiard, but with additional node lines
parallel to the short side b. This example demonstrates
that the correspondence between periodic orbits and

eigenfrequencies can be seen even without performing a
Fourier transform. Moreover, it is possible by direct in-

spection of the spectrum to associate part of the eigen-
frequencies with specific periodic orbits. It is indispensi-
ble for this purpose, however, to plot the spectra for a
large number of different l values together.

Though billiards represent only a small part of possi-
ble nonintegrable systems, they are especially suitable to
study the close correspondence between spectra and clas-
sical periodic orbits. This work has shown that a great
number of eigenvalues of billiards can be determined ex-
perimentally in very short times. A quantitative compar-
ison with computations unfortunately is not possible to
us as none of the publications mentioned in the begin-
ning contains any information on computer time spent.
In the experiments, contrary to the computations, the ex-
tension to three-dimensional systems is straightforward.
Of course a price has to be paid. In the experiments it is

unavoidable that part of the eigenvalues is overlooked,
and one has to account for this fact if the statistical
properties of the spectra are studied. If the correlation
of the spectra with classical periodic orbits is considered,
a loss of a few percent of the eigenvalues is probably of
little relevance.

Future experiments will proceed in two directions: (i)
continuation of the study of the dynamics of the eigen-
values under a change of the irregularity parameter of

the billiard; (ii) systematic variation of the point where
the microwaves are coupled to the resonator, by this also
detailed information on wave functions and scars should
be obtainable; (iii) measurement of the spectra of three-
dimensional billiards. In this case the electromagnetic
system is no longer equivalent to the quantum-
mechanical one, the correspondence between eigenfre-
quencies and periodic orbits, however, still holds.
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