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Electrodynamical Properties of Gapless Edge Excitations in the Fractional Quantum Hall States
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The electrodynamical properties of the edge excitations in the fractional quantum Hall (FQH) states
are studied. We show how to experimentally measure the (optical) charges of the edge excitations. The
interactions between the edge excitations are studied. We also discuss in detail the edge excitations of
the v=1 =% 1/n FQH states. Measuring the dynamical properties of the edge excitations is a practical

way to probe the topological orders in the FQH states.

PACS numbers: 73.20.Dx, 72.15.Gd, 73.50.Jt

Recently it was shown that the dynamical properties
of the gapless edge excitations in the fractional quantum
Hall (FQH) states are described by U(1) Kac-Moody
algebras.! In general, the gapless excitations may con-
tain many branches.!> The excitations in each branch
may carry a fractional charge. In this Letter we will
show how to experimentally measure the fractional
charge in each individual branch. We will study the
response of the edge excitations to an external electric
field.

The electrodynamical properties of the edge states in
the integer quantum Hall (IQH) states have been exten-
sively studied experimentally.® The experiments are sen-
sitive enough to clearly observe the gapless excitations.
The classical electrodynamical theory of the magneto-
plasmon can be found in Ref. 4. Here we will emphasize
on some new features appearing in the FQH states.

The response of the edge excitations to an external
electric field is determined by the edge-current correla-
tion function which has been studied in detail in Ref. 1.
Let us first review some results in Ref. 1. Assume that a
two-dimensional electron system demonstrates the FQH
effect (or the IQH effect) in a background magnetic field
A; (4p=0). Because of the finite-energy gap, we can
safely integrate out the electrons and obtain an effective
Lagrangian
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where 64, is the perturbation around the constant mag-
netic field 4, and v is the filling fraction. The coefficient
of the Chern-Simons term §4,0,84,¢*" is given by the
quantized Hall conductance.
On a compactified space, the action
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is invariant under the gauge transformation
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However, on a space with boundary, say, a disk D, Spuik

is not gauge invariant:
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where C=4D is the boundary of the disk and o
parametrizes the boundary C. Because the microscopic
theory is gauge invariant, (4) implies that Sy is not the
complete action of the FQH states on the disk. Since the
change in Spyi is just a boundary term, the total gauge-
invariant effective action may be obtained by including a
boundary action associated with the edge excitations
Siot =SvuiktSua. The effective action of the edge excita-
tions has a form
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where K is the current correlation function of the edge
excitations. Using the gauge invariance of the total ac-
tion S, we can determine the possible form of the
edge-current correlation function K. First, one can
show that the edge excitations must be gapless as a
consequence of the gauge invariance of Si,. At low en-
ergies, the gapless edge excitations, in general, may con-
sist of many branches. The excitations in each branch
have a common velocity v;. In this case the gauge in-
variance of Sy, requires the edge-current correlation
function to have a form (up to a polynomial in @ and k)'
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where the constant g, satisfies the sum rule
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From the current correlation function K** we can fur-
ther show that (using the locality properties of the
theory) the edge currents satisfy the U(1) Kac-Moody
(KM) algebra:
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where p; (=) and v; are the charge density and the
velocity of the edge excitations in the /th branch. The
edge current associated with the Ith branch is given by
ji=jf=vip;. The KM algebra (8) contains several in-
dependent copies. Each copy corresponds to one branch
of the edge excitations. From the experience of the To-
monaga model,> we see that the algebra (8) completely
determines the dynamics of the edge excitations.

We know that the edge excitations of the IQH states
are described by the Fermi-liquid theory of the charge e
electrons.® In order to compare the edge excitations of
the FQH states to the IQH states, we would like to point
out that the edge excitations in the FQH states can also
be regarded as a Fermi liquid, however, in a restricted
sense (see the remark at the end of the paper). Such a
Fermi liquid contains several branches of fermions.'
The charges and the Fermi velocities of the fermions are
given by g; and vy, respectively. One can check that, in
such a Fermi-liquid theory, the charge densities satisfy
the algebra (8) and the currents reproduce the correla-
tion function K*?. We will call g; the optical charges (or
simply the charges) of the edge excitations. We see that,
in contrast to the IQH states, the edge excitations of the
FQH states are related to a Fermi-liquid theory with
nonintegral charges q;.

We would like to stress that the fermions in the above
Fermi-liquid theory do not correspond to the electrons.
They are just effective fields describing the collective ex-
citations on the edge. They correspond to the Tomonaga
bosons in the Tomonaga model. This is possible because
bosons and fermions are equivalent in one dimension.

Let us study the response of the edge excitations to a
uniform rotating electric field. We will assume that the
FQH state has a disk geometry (see Fig. 1). In this case
6A, are given by

8A0(t,0) =¢(t,6) =Rcos [wt - % E,
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where R is the radius of the disk and E is the strength of
the electric field. A positive (negative) frequency w cor-
responds to counterclockwise- (clockwise-) rotating elec-
tric field. The induced charge and the current density of
the edge states are given by

J¥(w,k) =K""(0,k)6A4,(w,k) . (10)

FIG. 1. The disklike FQH state and the rotating electric
field.

Using (10) we may calculate the dipole moment induced
by the uniform electric field

Px(t)=fdoj°(t,o)Rcos L | =yEcos(wt). (11)
The susceptibility y is given by
vr c (112

x=—%R3Z (12)
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where a=e?/hc=1/137 is the fine-structure constant
and c is the speed of light. The imaginary part of y has
many &-function peaks at the resonance frequencies
Si=w;/2r=v;/2rR. The strength of the &-function
peaks

w;+éw 2
L”_M Im;((w)dw=§aR2c-§12— (13)
measures the optical charges carried by the edge excita-
tions. The poles at positive or negative frequencies cor-
respond to the resonances with counterclockwise- or
clockwise-rotating electric fields.

In realistic samples, 8; in (6) are finite. The dc resis-
tivity pedge along the edge is given by
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Note peqge is a resistivity in one dimension pedge=Rcdge/
L. Now the J-function peaks in Imy(f) have finite
width. The width at half strength is given by

Af1=6;/n. (15)

From (14) and (15) we see that the widths of the reso-
nances and the edge resistivity peqqe are related:
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Let us study the interactions between edge excitations.
The Hamiltonian of the edge excitations satisfies (8) and
is given by

H=X % |v/]p7. a7
1 qi

(16)

The coupling between the charge density and the exter-
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nal electric potential is

;p,(o)qﬁ(o). (18)

The Hamiltonian (17) is valid only for a specific electron
interaction and edge configuration. If we modify the
electron interaction and edge configuration, the Hamil-
tonian (17) is expected to receive correctons:

ﬁ=H+5H, 6H=ZV]Jp[pJ. (19)
1.J

The modified Hamiltonian H can be diagonalized by in-
troducing p;:

| 1
—pr=2Uy—py, (20)
qi J qs

where Uy, satisfies

UnUpnrr=n1, 1y =0|1=5, nu=sgnv;). (1)

In terms of 5;, H has the form

A=Y % lp7. (22)
I qi

One can_show that such a matrix U;; always exists as

long as H is a positive-definite function of p;. Because of

(21) the algebra of gy is still diagonal:
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From (22) and (23) we see that each p; describes a
branch of edge excitations with a new velocity 0;. If we
choose

q[=§Uqu, (24)

we find the coupling between p; and ¢ to be
Y 51(c)e(o). (25)
1

Thus g; can be still regarded as the charge density and
Gr are the new optical charges [see (23)]. We see that
after including the interaction Vj,, the original edge ex-
citations with the optical charge g, and the velocity v;
are mixed with each other and form new branches. The
edge excitations in the new branches have, different opti-
cal charges and velocities which are given by g; and ¢;.
Let us consider the IQH states in more detail. As-
sume all branches have the same velocity v; =v and the
interaction ¥V, is only between neighboring branches:

Vig=V8;s+1+ V81 s-1. (26)

We find the optical charges of the new branches are
given by

v=2: (§1,§2) =(/2,0),
v=3: (é],qz,q3)=(l.7l,0,0.29) s
v=4: (51,62,43,64) =(1.942,0,0.48,0) .
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We see that for the v=2 IQH state only one branch of
the edge magnetoplasmons is observable. For v=3 and
v=4 we can only observe two branches of edge magneto-
plasmons. The second branch is much weaker than the
first one because (§3/4;)? is equal to 35 for v=3 and
15 for v=4.

Haldane’ has argued that for the FQH states with
simple filling fractions v=1/n the specific heat of the
edge excitations is equal to the specific heat arising from
a single Fermi point. This implies that there is only one
branch of the edge excitations. According to (7) the fer-
mions in the corresponding Fermi-liquid theory must
carry an irrational (optical) charge ¢ =1/v/n. The ve-
locity of the edge excitations is roughly given by v=cE/
B, where E is the electric field normal to the boundary
and B is the magnetic field.

Using the above results we would like to argue that
the FQH states with filling fractions v=1—1/n have two
branches of edge excitations. To understand this result
let us first consider a special edge configuration. The
edge potential is arranged such that the filling fraction
first changes from 1 —1/n to 1, and then from 1 to 0 (see
Fig. 2). The edge excitations on the boundary between
the v=1—1/n and the v=1 FQH states are identical to
the edge excitations on the boundary of the v=1/n FQH
state. They carry an optical charge g, =1//n. The edge
excitations on the outer boundary are just the edge exci-
tations of the v=1 IQH state® with an optical charge
g1 =1. Because the electric fields on the two boundaries
point to opposite directions, the edge excitations on the
two boundaries have opposite velocities. As we deform
the edge potential, the two edge branches may come
close together and start to interact with each other. The
optical charges and the velocities may change due to the
interaction. However, the number of branches and the
signs of the velocities remain unchanged, at least when
the interaction is not too strong.

Similarly we can argue that there are two branches of
edge excitations in the FQH states with filling fractions

FIG. 2. A special edge configuration of the v=1—1/n FQH
states. The edge excitations on the outer boundary carry an
optical charge g, =1. Those on the inner boundary carry an
optical charge g>=1//n. The excitations on the two boun-
daries move in opposite directions.
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v=1+1/n. The optical charges are given by g, =1 and
g2=1/~/n if the interaction is ignored. But in this case
the excitations in the two branches move in the same
direction.

Before ending this paper we would like to make the
following remark. As have been pointed out in Ref. 1,
the Fermi-liquid description of the edge excitations are
only valid in the charge-zero sector when g; are not in-
tegers. We can only prove that the charge-zero sector of
the Fermi-liquid theory is equivalent to the charge-zero
sector of the edge excitations (which is described by the
KM algebra). The properties of the charged excited
states cannot be determined solely from the Kac-Moody
algebra. The fact that the charge-zero excited states are
described by a charge ¢g; Fermi-liquid theory does not
imply that the total charge of a charged excited state is a
multiple of g;. In our case the charged excited states are
obtained by adding electrons to the edge. Therefore the
total charges of charged excited states are quantized as
integers. The optical charge g; is measured by the
current correlation function which involves only the
charge-zero section. The mismatch between the optical
charge and the total charges of charged excited states
implies that the charged excited states are not described
by the Fermi-liquid theory.® Therefore is is not surpris-
ing to see that the charge-zero sector of the edge excita-
tions is described by a Fermi-liquid theory with an irra-
tional charge. The fermions in the Fermi-liquid theory
are just effective fields describing the collective edge ex-
citations.

However, it is still safe and helpful to use the Fermi-
liquid description of the edge states if we are only con-
cerned about the processes that conserve the total
charge. For example, the Fermi-liquid theory gives the
correct value of specific heat. It also gives a correct
description of the response to external electromagnetic
fields.

In this paper we study the electrodynamical properties
of the edge excitations in the FQH states. We show how
to measure the optical charges of the edge excitations.
Measuring the dynamical properties of the edge excita-
tions is a practical way to probe the hierarchy structures,
or more precisely, the topological orders’ in the FQH
states. The edge excitations provide us with a window
through which we can look into the internal structures of
the FQH states.
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FIG. 1. The disklike FQH state and the rotating electric
field.



FIG. 2. A special edge configuration of the v=1—1/n FQH
states. The edge excitations on the outer boundary carry an
optical charge g, =1. Those on the inner boundary carry an
optical charge g>=1/+/n. The excitations on the two boun-
daries move in opposite directions.



