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Edge States in the Fractional-Quantum-Hall-Eff'ect Regime
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A finite two-dimensional electron gas with W full Landau levels has W branches of edge states which
cross the Fermi level. In this Letter we show that in the fractional-quantum-Hall-eflect regime there
can be many branches of edge states for a single partly filled Landau level. The ith branch can be asso-
ciated with a fractional charge, ef„and P,f, equals the Landau-level filling factor. The set of edge-state
charges at a particular filling factor directly reflects the hierarchical structure of the incompressible
ground state which occurs at that filling factor.

PACS numbers: 73.40.Kp, 67.50.—b
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from k =0 to k =N —
1 are occupied. [In Eqs. (1) and

(2) z =x —iy and 2ttl 8 =&Pa so that pi, +1(=) encloses
one more quantum of flux than vt, (=).] For a finite sys-
tem' the energies of these single-particle states increase
with m at the edge of the system, as illustrated schemati-

In the thermodynamic limit a noninteracting two-

dimensional electron gas (2DEG) has an incompressible
ground state whenever an integral number of Landau.
levels is full; i.e. , the chemical potential jumps from
htu, (N+ —,

' ) to htu, (N+ —', ) after the Nth Landau level

is filled. It follows that for a finite system all single-
particle states which occur at energies in these gaps must

be localized at the edge of the system. In fact it is easy
to show that there is one branch of edge states for each
occupied Landau level and that the states in each branch
may be labeled by the number of flux quanta (@o=hc/e)
that their orbits enclose. '

The importance of these edge states in understanding
the quantum Hall effect (QHE) has been appreciated
since shortly after the eA'ect's discovery. More recent-

ly the edge-state picture has been placed in the frame-
work of Landauer resistance formulas, allowing for a
unified description of the quantum Hall eAect and other
quantum transport phenomena. In this Letter we gen-
eralize the edge-state picture to the fractional-quantum-
Hall-efl'ect (FQHE) regime. We predict the existence
of a set of edge-state branches. The number of edge-
state branches which occur at a particular filling factor
and the set of branch charges are determined by the
hierarchical structure of the incompressible ground
state which occurs at that filling factor.

The starting point for the construction of the hierar-
chy is the set of incompressible states discovered by
Laughlin,

@., [zi = H (z, —z, )"'H«p( —
I z~ I

"/4l')
l(J It

For m = 1 this state is the full-Laudau-level state in

which all single-particle states,

cally in Fig. 1(a). For each added electron the flux en-
closed by the system increases by @0. For m&1 it is

easily verified by comparing Eqs. (I) and (2) that the
flux enclosed by the system increases by m&0 for each
electron added to the system. The states which can be
constructed with a smaller increase in area must place
electrons at a lower relative angular momentum and
therefore lie above the bulk excitation gap'' [see Fig.
1(b)I. The edge states which exist in the gap are there-
fore quantized as if their flux quantum were @o =bc/e*
with e* =ef and f= I/m. We will assign a charge to
each branch of edge states according to the rate of in-

crease of enclosed flux as particles are added in that

(a) v= ~

(b) v= &/3

(c) v = 2/s

FIG. 1. Schematic comparison of edge-state branches in (a)
integer and (b), (c) fractional regimes. When the chemical po-
tential (dashed line) lies in the gap electrons are added or tak-
en away at the edge of the system when the chemical potential
ls changed. (b) At v=1/m the area of the system must enclose
m additional flux quanta for each electron added to the system
to avoid placing electrons at relative angular momentum m —2
and raising the chemical potential above the gap. (c) For
v=1 —1/m an electron can be added by taking the particle-
hole conjugate with respect to a system with an additional elec-
tron or by taking the particle-hole conjugate of a state with one
fewer electron.
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(3)

(g[z] is defined by this equation. ) Since @~[z] is the
full-Landau-level wave function, g[z] is the function
which creates the incompressible state @ in the holes of
the full Landau level. The wave function where the state
represented by @ is created in the quasiholes of @ [z] is
then given by

branch.
An essential element of the hierarchy construction,

and the one which leads to a proliferation of edge-state
branches, is the invocation of particle-hole symmetry. '

Given an incompressible state, @, which occurs at v & &

we can conclude that the particle-hole conjugate of N is
an incompressible ground state at filling factor v'=1 —v.

For a finite system a new branch of edge states is intro-
duced by this process, corresponding to the edge states of
the full Landau level with respect to which the particle-
hole conjugation is taken. In addition, the edge-state
branches which already existed in @change from having
electronlike character to having holelike character, or
from having holelike character to having electronlike
character. For edge branches of holelike character the
number of flux quantum enclosed by the orbit decreases
as the chemical potential is increased [see Fig. 1(c)].
Thus, for example, at v=

3 there are two edge-state
branches, one of which has charge 1 while the other has
charge —

3 .
A prescription for generating the full hierarchy may

be based on the process of particle-hole conjugation. ' '
We can always express the particle-hole conjugate of an
incompressible state N in the form

~;[zl =g[z]~, lzl .

f,'= f, y~, /y~~—, i =1, . . . ,M, (8)

and an additional branch with charge

fM + I yei/V I

Similarly the particlelike daughter states occur at filling

factors v'= v„, and have charges given by

f =f;v /v), i =1, . . . , M, (1O)

and

fM+i = [(1 —2v)/(1 —v)] v~/vi .

refiected entirely in g[z], these branches will now have
the same sign as in &[z] but will have their charges
scaled by the area expansion factor v~ /v . However, oc-

cupying a new state in the full Landau level before
particle-hole conjugation changes both +~[z] and Q[z].
By calculating the change in the degree of N [z] when

one electron is added to the full Landau level we may
conclude that for this case the charge of the added
branch is (1 —2v) v /v~ (1 —v).

The conclusions from the preceding paragraphs can be
summarized by the following rules. The incompressible
states at the first level of the hierarchy are the Laughlin
states, & [z]. These states have a single branch of edge
states with charge e~ =ef~ =e/m. For any hierarchy
state which occurs at filling factor v& —,', a series of
holelike daughter states occurs at the next level of the
hierarchy at filling factors v'= v [Eq. (5)]. If @ has M
branches of edge states, with charge ef, in branch i, then
the daughter state has M branches of edge states with

charges given by

[..] =Q[z]e„,[z], m =1,3, . . . ,

and occurs at filling factor

(4) Note that a state which occurs at level M of the hierar-
chy has M branches of edge states. Also

v =-(1 —v)/[m(1 —v)+ v] . M+1
(12)

@,[z] =g+[z]@„,[ ], m =3,5, 7, . . . , (6)

where g+[z] is obtained from g[z] by replacing z; by
(28, ) and thus acts to contract the system rather than
expand it. This incompressible state occurs at filling fac-
tor

v = (1 —v)/[m (1 —v) —v] (7)

Since the edge-state branches which occur in N[z] are

(Here v is the filling factor at which @[z]occurs. ) Com-
paring Eqs. (1) and (2) we see that replacing 4&~[z] on
the right-hand side of Eq. (3) with & [z] on the right-
hand side of Eq. (4) expands the area associated with
each edge state by the factor '

v~ /v =m (1 —v) + v.

Thus the flux quantum for the edge states is increased,
and the characteristic charge decreased, by the same fac-
tor. The wave function where the state represented by
d&[z] is created in the quasiparticles of N [z] is then
given by' '

for both electronlike and holelike daughters. Equation
(12) can be proved by induction starting from the
Laughlin states and using Eqs. (8)-(11). We see below

that Eq. (12) is required by the occurrence of the frac-
tional quantum Hall eff'ect. The edge-state branch
charges for some states occurring at low levels of the
hierarchy are listed in Table I.

States in the gap at level M of the hierarchy are com-

pletely specified by the single-particle edge-state occu-
pancies of the M full-Landau-level wave functions which

enter into their hierarchical construction. The parame-
trization of the relevant many-body states in terms of
single-particle quantum numbers has some similarity to
the Landau Fermi-liquid phenomenology for strongly in-

teracting metals and allows us to use single-particle con-

cepts to understand low-energy properties. As we discuss
below, many of these properties depend only on the
quasiparticle charges listed in Table I. The low-lying ex-
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TABLE I. Fractional charges of edge-state branches for
some incompressible states occurring at low levels of the

h ierarchy.

quantum Hall eflect at some filling depends only on the
existence of an incompressibility at that filling factor and

is quite independent of the microscopic origin of that in-

compressibility. On the other hand, the charges listed in

Table I directly reflect the hierarchical nature of frac-
tional Hall states.

As in the integer case' ' we assert that on the frac-
tional Hall plateaus local equilibria are established on

opposite edges of a system which carries a net current.
The Hall conductance is then e times the rate of change
of the diamagnetic edge current with the chemical poten-
tial in equilibrium. This may be related to thermo-

dynamic properties of the system since, when the chemi-
cal potential lies in the gap,

aM
( aH)

citations at level M of the hierarchy are much like those
of a system of noninteracting electrons with M full Lan-
dau levels except that the charges may be fractional and

may be negative. As emphasized elsewhere' and dis-
cussed explicitly below, the occurrence of the fractional

(»)g al
C Bp

The last form for Eq. (13) follows from the continuity
equation and from the fact that 8&j(x))/tip can be
nonzero only at the edge of a gapful system. We evalu-
ate tIM/Bp ~e from the expression (T =0)

9M
Bp

a2
[F. pN] = ——

p

M
'

J d~(E, (~) p]e(p——z, (~))
i)p 8B

(14)

M 2e~f ev
h, -] h

9M
GH =e

'Bp A Bp

Since BM/Bp )a =8N/BB [„ it follows from Eq. (14) that
the fractional Hall eAect will occur whenever a gap ex-
ists at a fractional filling factor and hence that Eq. (12)
must be satisfied by any theory of the fractional edge
states regardless of its microscopic origin.

Since the fractional Hall efl'ect only depends on the to-
tal of all branch charges it is of interest to be able to de-
scribe more general situations where the various edge-
state branches are not always in local equilibrium. We
do so by generalizing the Buttiker multichannel mul-

tiprobe resistance formula ' to the fractional regime.
The current out of the ath probe is given by

I, = —g T, p(p, —pp),
P~a

I

where we use greek indices as probe labels,

(16)

(17)

In Eq. (14) we have gone to the continuum limit and la-

beled states by the areas they enclose. The quasiparticle
energies, IF, (A)], are defined to be the energy per elec-
tron to add a quasiparticle in branch i and we have used
the fact that for branch i Bf,/@0 electrons are added to
the system per unit area increase. Combining Eqs. (12),
(13), and (14) we have the expected result for the Hall
conductance,

and P, p is the transmission probability from branch j in

lead P to branch i in lead a. Equation (16) expresses the
total current in lead a as the total outgoing current less
the incoming current from all other contacts. Thus
eT, plh is the increase in the current arriving at probe a
per unit chemical-potential change at probe p. Equation
(17) then follows from Eq. (15). Equation (17) provides
a basis for discussing localization phenomena in the frac-
tional regime and for analysis of experiments in which

gates are used to establish contiguous regions which are
fractionally quantized at diA'erent densities. ' The latter
experiments can potentially provide unique information
about the incompressible ground states as we illustrate
with the situation depicted in Fig. 2, where current is in-

jected from a region exhibiting the v= —', FQHE through
a barrier exhibiting the v= I integer QHE and collected
in a v = —', FQHE region. The charge I edge branch ex-

ists in both regions, while the holelike charge
branch sees the electrostatic potential which attracts
electrons to the higher-density region as repulsive. This
suggests that it may be possible to realize a situation
where the hole branch would be reflected. Application of
Eqs. (16) and (17) would then lead to a negative resis-

tance as illustrated in Fig. 2. Confirmation of this pre-
diction would constitute the first direct experimental
demonstration of the hierarchical nature of the FQHE
ground states. We emphasize that the situation depicted
in Fig. 2 will be realized only if the two edge branches
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FIG. 2. Transmission probabilities for injection from a

v —', FQHE region toward a v 1 integer QHE region. Car-

riers in the holelike edge branch are repelled by the potential
under the gate while carriers in the charge 1 edge branch are
transmitted. Disorder will prevent the reflection from taking

place. I = —hl/e . Note that the chemical potential increases
in the direction of net electron current flow.

are very weakly mixed by potential fluctuations near the
barrier region and probably requires that the two edge-
state branches be spatially separated by several magnetic
lengths. Since the separation can be at most of the order
of the distance over which the confining potential
changes by the fractional excitation gap, the confining
electric field at the edge cannot be more than a few times
10 V/cm at 10 T. (The analogous requirement for the
integer case is that the electric field be less than about
10 V/cm. ) When this condition is not satisfied the ex-
periments will be sensitive only to the total edge charge,
i.e., to the filling factor in each region. As far as we are
aware all experiments to date' ' are in this regime.
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