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Forces upon Vortices in Anisotropic Superconductors
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Forces on two parallel vortices in anisotropic materials are generally not directed along the line con-
necting the vortices. The interaction results not only in a repulsion but, in addition, in a torque. On a
macroscopic scale, if the magnetic induction 8 or the anisotropy parameters m, I, change within a crystal,
the flux-line lattice is subject to forces associated with spatial variation of the torque originated by an-

isotropy. This force is additional to and diA'erent from the Lorentz force, and both forces are, in general,
comparable in magnitude.

PACS numbers: 74.60.Ge

The forces between vortices in type-II superconductors
can be evaluated by extracting the interaction part from
the total energy. ' %hen the cores are not overlapped,
the repulsive force exerted by a vortex 3 upon a parallel
vortex 8 can be written as the Lorentz force jq xpoz/c,
where j& is the current density of the vortex A at the lo-
cation of 8, z is the direction of the vortex axes, and Po is
the Aux quantum. The lines of jz are circles centered at
A, resulting in the Lorentz force along the radius; i.e.,
the interaction force is directed along AB. In the aniso-
tropic case, the current lines are no longer circles (unless
the vortices are directed along the c axis of a uniaxial
material); see Fig. 1. Then the direction of jz xz devi-
ates from AB, and the question arises whether or not the
force is still given by the common Lorentz expression.

To show that this is the case, one can start with the
London free energy in the standard notation (see, e.g. ,

Ref. 2):

F=g (h +2'm, q curl;hcurlqh)dxdy/8n'.

Here m;g is the dimensionless "mass tensor" and k is the
(geometric) average penetration depth. Minimization of
F with respect to h(p) (p= jx,yj) yields the London
equations. ' Although a su%ciently simple analytic solu-
tion h(p) for a single vortex is not available, the
Fourier transform h(k) is readily obtained for a vortex
oriented arbitrarily within a uniaxial crystal: -'

Here m - =m, sin 8+m, cos 8 and m„- =(m, —m, ) sin8
xcos8; m, , are eigenvalues of m, f,- along the i,c axes of
the uniaxial crystal; 0 is the angle between the c axis and
the vortex z axis at the origin p =0; we choose y =cx z.
For another vortex at p =R, the equation for h (p) con-
tains the term pa6(p —R) [instead of po6(p) for the vor-
tex at the origin]; therefore, the Fourier components of
h(p —R) are obtained from Eqs. (2) just by replacement
of po with poe'

The free energy (1) can be rewritten in terms of h(k):

1+12m k '-

F;„,=F—2FO= d~k, cos(k. R)
4& 4z'd

I. (R).40

4z
(4)

Here Fo is the line energy of a single vortex and h~(R)
is the field of vortex A at point R, where vortex B is situ-
ated. The force upon the vortex at R is

d'k[lhl' —~';, (kxh), (kxh), l/4 . (3)

For two parallel vortices, A at p =0 and 8 at p =R, the
Fourier components of h are given in Eqs. (2) with po re-
placed by po(I+e'"'"); substituting them into Eq. (3)
one obtains the interaction energy

h, (k) = —h, (k)k, /k, =yok2m. , k,
'
-/d, . -.

h-(k) =go(1+X'm k)/d, ---
d =(I+X-'m--k, +A, 'm, .k, -. )(1+A, -m, k '-)

(2) i.e., the interaction in the anisotropic situation is indeed
represented by the common Lorentz expression.

As a simple example, let us consider the vortices paral-
lel to a (z=a). In this case m =m„m„- =0, and
h~-(k) =go/(I+X, m, k, +k m, k, . ) for vortex 8 at the
origin; hq, =hq, . =0. h~-(R) can be obtained by invert-
ing h~-(k) or, directly, by integrating the London equa-
tions in the x-J space:

FIG. 1. The interaction forces upon two parallel vortices,
f Ig and f&.i, are not parallel to AB.

2%k ala I(
where Ko is the modified Bessel function, and [X,YI =R.
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The force (S) now reads

eoK, (R,+)
8/r X mmR/

X.+ Y.x+ y
ma mp

(7)

In the case considered (x =c, y =b, i =a),

PoKi(Ri/X, )
(m, —m, )XYz.

8z X mR[

(8)

It is worth noting that z vanishes if both cores (3 and 8)
are situated at either x or y axes. However, the position
along the x axis (or along c in this example) is stable
with respect to rotations of the pair AB (with a fixed in-

tervortex spacing R), unlike that along y=b. This result
is related to the tendency of vortices to align in "chains"
along c, observed in decoration experiments with a small
field in the a-b plane of a YBaCuO single crystal: One
should, however, consider a system of many vortices, not
a pair, to find out whether the bare fact of anisotropy
suffices for chain formation.

Let us now consider in what way the anisotropy affects
the macroscopic forces upon IIux-line lattices (FLL).
The forces f; (per unit volume) experienced by any mac-
roscopic physical system are described by the stress ten-
sor o;k. f; =Ba;k/Bxk. As a direct consequence of the
angular momentum conservation, this tensor is sym-
metric, 0;I, =ap;, for a system in the isotropic space. 6

An anisotropic superconductor constitutes an "anisotrop-
ic space" with respect to the system of vortices it hosts.
Therefore, a;I, for FLL's may have an antisymmetric
part, cr,'I,- = —aI', ;. This part is directly related to the
torque density r acting upon the system. The tensor z;I,

=e;I,„t„, dual to the vector i„, is given by

0/+k e/kn z /2 . (io)

The torque density in high-T, superconductors (which
are uniaxial or almost uniaxial) has been measured in

fields that were constant over the sample (and large with
respect to the lower critical field H, i). The stresses
(10) in these experiments were uniform (z=M x8; both
the magnetization M and 8 were constants) and no force
was generated. If, however, the torque i changes from
point to point (8&const, the anisotropy m, k is not uni-
form, etc.), an extra force acts on the FLL:

f; =Go,'k/Bxk = —curl;z/2.

This force and the corresponding stresses can also be

As was pointed out above, this force is not parallel to
R=Xx+Yy, which connects the interacting vortices.
Therefore, the system of two vortices is subject to a
torque

z =R x f =yoR x [j„(R)x i]/e

written in the form

j x 8/c —curl r/2+ P =0,
where P stands for the pinning force density (possible
corrections to the force balance due to spatial variations
of the FLL structure are disregarded).

To demonstrate qualitatively what the extra force (11)
does, let us consider the case of intermediate fields,
H, /«8 «H„2, for which the equilibrium free-energy
density F is known; see, e.g. , Ref. 11, where F is ex-
pressed in terms of components of 8 and of m;k in a spe-
cial coordinate system (with z=B/8). One can write F
in any Cartesian coordinates in terms of the invariant
8*=(m;kB;Bk ) '/ (8 turns into 8 in the isotropic case
and into Bm.'.-/ for the uniaxial situation in notation of
Ref. 11):

8 4'o n,
i

4oP

32/r'X' 2/rg'8*
(i4)

Here X and g are the geometric averages for the penetra-
tion depth and the coherence length, and p is a constant
of order unity. The torque density r=MxB=Bx(tiF/
88) is readily found:

zi eikn mnm Bk Bm@(8

@=(po/32/r A, 8*)ln(pop/2/rg eB*)
(IS)

(e=2.718. . .). This is, in fact, the result of Ref. 12,
written in arbitrary Cartesian coordinates. According to
Eq. (10), the antisymmetric part of the stress tensor is

o'i'k =(m/iBk mkiB; )814(B*)—/2. (16)

Thus, the force f;=So,'k/tlxk can be obtained as long as
the induction B(r) and m;k(r) are known.

Strictly speaking, Eqs. (14)-(16) hold only in a uni-
form field. If, however, the changes in 8 occur on dis-
tances L large with respect to the cell size (Po/8) '/, one
can consider the FLL as being in equilibrium /ocally.
This condition is satisfied easily in large fields: The mac-
roscopic current density J is of order

eB/4/rL «cB /4/rp' -2x10 8 A/cm

(8 in gauss); for 8=10 G, this yields J«10 A/cm .
Consider, for example, the situation shown in Fig.

2(a), where the 8 lines are in the x-z plane (8,, =0);
assume that B, is odd while B. is even in z. The crys-

f ' = curl (8 x H )/8/r, cr k
= (8;H/ —BkH, )/8/r, (12)

which shows explicitly that they vanish if B is parallel to
H (in a small vicinity of the point where f' is evalu-
ated). ' In general, f' is comparable in magnitude to
the Lorentz force (jx 8)/c =curlH x 8/4/r. Therefore, it
should be incorporated in the macroscopic conditions for
the FLL to be in rest:
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FIG. 2. Forces upon bent flux-line lattices. The crystal axes
c and a are the same and m, & m, for all cases shown. The
anisotropy-originated force f' is opposite to the Lorentz force
ft in (a), whereas they are of the same direction in (b). If the
vortex lines (i.e., the lines of B) are closed as in (c), forces f'
tend to deform vortices as to make them go mostly along the
"easy" direction (in the a-b plane), where their line energy is

minimum. The Lorentz force, which is not shown, acts inward
everywhere along the vortex loop. Therefore, under the
Lorentz force the loop would contract, while f' tends to make
it "flat."

tal axes a, b, c coincide with x, y, z, respectively. Then,
the only nonzero components of tr,'t, [Eq. (16)) are
cr„'- = —tr-', =(m, —m, )B„B.@(8*)/2 and-8* =m, B„
+m, B-. At z =0, 8„=0, and one obtains f;=(m, .
—mb)8@(8*)t)8,/Bz, 8*=Bm,'t . For m, & m„ this
force is positive because, as is seen from Fig. 2(a), 88„/
Bz & 0. Note that the Lorentz force fL

= (j x B/c), & 0
in this particular situation. Therefore, the anisotropy-
originated force f' reduces the eff'ect of the Lorentz
force in the configuration of Fig. 2(a).

A situation similar to that of Fig. 2(a) may occur in

long thin-film strips (with the c axis perpendicular to the
film plane) close to the strip edges. The field and the
current density are usually large near the edges, which
therefore constitute "weak spots" where the flux flow un-

der the Lorentz force can occur first. One is tempted to
speculate that the reduction of ft by the force f' at the
edges helps in achieving the high critical currents ob-
served in c-axis-oriented films of high-T, superconduc-
tors.

Similar arguments show that in the configuration of
Fig. 2(b), f' and ft act in the same direction. The flux

flow in this situation, however, may be prevented by the
"intrinsic" pinning of vortices oriented along the layered
structure or by large energy barriers associated with
shear deformations of the FLL;' the reenforcement of
fI by f' near the top and bottom surfaces of c-axis-
oriented films does not make the above speculation on
the cause for high J,.'s less appealing.
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Note added. —It has recently been shown that for a
vortex inclined with respect to the c axis, the field
h-(x, y) may change sign at distances on the order X [A.
M. Grishin, A. Yu. Martynovich, and S. V. Yampolskii
(private communication)]. The interaction given in Eq.
(4) becomes attractive for parallel (to z) vortices in the
c-z plane or close to it.

'P. G. de Gennes, Superconductivity of Metals and Alloys
(Benjamin, New York, 1966).

2V. G. Kogan, Phys. Rev. B 24, 1572 (1981).
3V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 14, 134 (1944); A. M.

Grishin, Fiz. Nizk. Temp. 9, 277 (1983) [Sov. J. Low Temp.
Phys. 9, 138 (l983)]; A. V. Balatskii, L. I. Burlachkov, and L.
P. Gor'kov, Zh. Eksp. Teor. Fiz. 90, 1478 (1986) [Sov. Phys.
JETP 63, 866 (1986)].

4N. Schopohl (private communication) obtained such a solu-
tion in the integral form.

~G. J. Dolan, F. Holtzberg, C. Field, and T. R. Dinger, Phys.
Rev. Lett. 62, 2184 (1989).

6L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Pergamon, New York, 1983), Sec. 32.

7L. D. Landau and E. M. Lifshitz, Theory of Elasticity
(Pergamon, New York, 1986), Sec. 2.

8D. E. Farrell, C. M. Williams, S. A. Wolf, N. P. Bansal,
and V. G. Kogan, Phys. Rev. Lett. 61, 2805 (1988).

D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, P. Z.
Jiang, K, G. Vandervoort, D. J. Lam, and V. G. Kogan, Phys.
Rev. Lett. 63, 782 (1989).

'OThe field H =4ttl)F/i)B (not to be confused with the exter-
nally applied field) is well defined only in equilibrium. On the
other hand, the magnetic moment per unit volume M and the
torque density r have a clear meaning out of thermodynamic
equilibrium, e.g. , in the critical state. For this reason Eq. (11)
for f' has a broader domain of applicability than Eq. (12).

''V. G. Kogan, M. M. Fang, and Sreeparna Mitra, Phys.
Rev. B 38, 11958 (1988).

'-'V. G. Kogan, Phys. Rev. B 38, 7049 (1988).
' D. K. Christen, C. E. Klabunde, J. R. Thompson, H. R.

Kerckner, S. T. Seeula, R. Feenstra, and J. D. Budai, in

Proceedings of the 1nternational Conference on Materials and
Mechanism of Superconductivity, Stanford, i989, edited by R.
N. Shelton, W. A. Harrison, and N. E. Phillips [Physica (Am-
sterdam) 162-164C, 653 (1989)].

'4V. G. Kogan and L. J. Campbell, Phys. Rev. Lett. 62, 1552
(1989).

2194


