
VOLUME 64, NUMBER 2 PHYSICAL REVIEW LETTERS 8 JANUARY 1990

Edge channels for the Fractional Quantum Hall Effect
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The concept of edge channels is extended from the integer to the fractional quantum Hall effect, and

the contribution of an adiabatically transmitted edge channel to the conductance is calculated. The re-

sulting generalized Landauer formula explains the recent observation by Kouwenhoven et al. of fraction-
al quantization of the Hall conductance at a value unrelated to the bulk properties of the sample.

PACS numbers: 72.20.My, 73.40.Kp

Can a two-dimensional electron gas with integer filling
factor show a fractional quantum Hall effect? The ex-
perimental answer is yes, as shown by Kouwenhoven et
al, ' in a special geometry in which closely spaced current
and voltage leads are separated by barriers from the bulk
two-dimensional electron gas (2DEG). Quantization of
the Hall conductance GH at —', &&e /h was measured in

this geometry in a 2DEG for which a conventional Hall
measurement gave quantization at 1 &&e /h. If one would

naively apply Laughlin's well-known gauge argument to
this situation, the latter measurement would imply that
the quasiparticle excitations in the 2DEG have unit
charge e, while from the former one would conclude a
fractional charge e* =e/3. Note that these are all four-
terminal conductance measurements, which a priori one
would not have expected to depend on how the current
and voltage leads are coupled to the sample.

In the integer quantum Hall effect (IQHE), the con-

cept of edge channels, in combination with the assump-
tion of adiabatic transport (i.e., absence of inter-edge-
channel scattering on short length scales ), has been suc-
cessful in explaining the anomalous dependence of GH on
the properties of the leads. As shown in Ref. 1, a sim-

ple modification of the formula ' for the anomalies in

the IQHE can accurately describe the anomalies in the
FQHE as well —suggesting that a generalization of the
edge-channel concept to the FQHE should be possible.
Edge channels in the IQHE are defined in one-to-one
correspondence with the bulk Landau levels: On ap-
proaching the boundary of the 2DEG, a Landau level

which in the bulk lies below the Fermi level rises in ener-

gy because of the presence of the confining potential.
The intersection between the nth Landau level and the
Fermi level defines the location of the nth edge channel.
This single-electron description is not applicable to the
fractional quantum Hall eA'ect (FQHE), which is funda-
mentally a many-body effect. Chang and Cunning-
ham' interpreted their earlier experiment on the resis-
tance of a barrier in the FQHE regime in terms of con-
duction via some form of edge channels, but they did not

specify what these channels would be. Indeed, it is not
immediately obvious that the concept of independent
current channels within the same Landau level has any
meaning at all.

In this paper it is shown how the concept of an edge
channel can be generalized to the FQHE, and a general-
ized Landauer formula relating the conductance to the
transmission probabilities of the edge channels is derived.
In this formula the edge channels contribute with a frac-
tional weight, which is not simply related to any particu-
lar quasiparticle charge e*. The results obtained explain
the experiments of Refs. 1 and 10, and allow a prediction
of the outcome of proposed experiments'' to directly
measure the quasiparticle charge in the FQHE.

Consider a narrow 2DEG conductor (a "wire") paral-
lel to the y axis, in a perpendicular magnetic field
B=Bz. In equilibrium, at T=O, the electron density
n(r) varies as a function of r=(x,y) in such a way that
U —pN is minimized. Here p is the electrochemical po-
tential, N is the total number of electrons, and U is the
total energy of the sample (including electrostatic contri-
butions, cf. Ref. 12). A uniform interacting 2DEG of
density n in a strong magnetic field has the remarkable
property ' that the internal energy density u (n) has
downward cusps at densities n = v~Be/h corresponding to
certain fractional filling factors v~. As a result, the
chemical potential du/dn has a discontinuity (an energy
gap) at v= v„,with du~ /dn and du& /dn the two limit-
ing values as v v~. At the edges of the wire the densi-

ty is reduced due to the increase in electrostatic potential
energy p(r) (which itself is determined both by the
external confining potential and by nonuniformities in

n). If p varies sufficiently slowly at the edge, one can ap-
proximate the internal energy density at r by the energy
density u(n(r)) of the uniform 2DEG with density n(r)
The equilibrium electron density is then given by'

n = v&Be/h, if du„ /dn ( p —
p ( du~+/dn,

du/dn+ p(r ) =p, otherwise .

The resulting stepwise decrease in filling factor
v= nh/eB on approach—ing the edge is illustrated in Fig. 1.
The requirement on the smoothness of p for the appear-
ance of a well-defined region at the edge in which v is
pinned at the fractional value v~ is that the change in p
within a magnetic length i„,=(h/eB)' '

is small com--
pared to the energy gap du&+/dn —du& /dn Depending.
on the smoothness of @, one thus obtains a series of steps
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FIG. 1. Schematic drawing of the variation in filling factor
v, electrostatic potential p, and chemical potential du/dn, at a
smooth boundary in a 2DEG. The dashed line in the bottom
panel denotes the constant electrochemical potential p =p
+du/dn The d. otted intervals indicate a discontinuity (energy
gap) in du/dn, and correspond in the top panel to regions of
constant fractional filling factor v~ which spatially separate the
edge channels.

a«=v~ (p =1,2, . . . , P), as one moves from the edge
towards the bulk. The series terminates in the filling fac-
tor vp=vbU)k of the bulk, assuming that in the bulk the
chemical potential p —

p lies in an energy gap. The re-
gions of constant v at the edge form bands extending
along the wire. These incompressible bands (in which
Bn/Bp =0) alternate with bands in which p —p does not
lie in an energy gap. The latter compressible bands (in
which Sn/bpa0) may be identified as the edge channels
of the transport problem, as will now be discussed.

The transport problem is studied, in the spirit of Lan-
dauer, '

by bringing one end of the conductor in contact
with a reservoir at a slightly higher electrochemical po-
tential p+Ap, but without changing p. The resulting
change hn in electron density is

5n bn
hn = hp = — hp,

Bp p BP p
(2)

where 8' denotes a functional derivative. In the second
equality in Eq. (2) it has been used that n is a functional
of p —p, by virtue of Eq. (1). In a strong magnetic field,
this excess charge moves along equipotentials with the
macroscopic drift velocity E/B (E=B&/e8r being the
electrostatic field). The component vd fi of the drift ve-
locity in the y direction (along the wire) is

i'dr[fi y' (Ex B/B ) = —(1/eB)tl&/cfx (3)

The nonequilibrium current density j= —ehnvd„-p, be-
comes simply

e Bvj= ——~p
h Bx

Schematic drawing of the incompressible bands
(hatched) of fractional filling factor v~, alternating with the
edge channels (arrows indicate the direction of electron motion
in each channel). (a) A uniform conductor; (b) a conductor
containing a barrier of reduced filling factor (as in the experi-
ment of Ref. 10).

(s)

It follows from Eq. (4) that the incompressible bands
of constant v=v~ do not contribute to j. The reservoir
injects the current into the compressible bands at one
edge of' the conductor only (for which the sign of 8v/8x
is such that j moves away from the reservoir). I define
the generalized concept of the edge channel with index

p =1,2, . . . , P as that compressible band which is
flanked by incompressible bands at filling factors v~ and

v~ ~. (The outermost band from the center of the con-
ductor, which is the p=l edge channel, is included by
defining formally vo —=0. ) The arrangement of alternat-
ing edge channels and incompressible bands is illustrated
in Fig. 2(a). Note that different edges may have a
diAerent series of edge channels at the same magnetic
field value, depending on the smoothness of the potential

p at the edge (which, as discussed above, determines the
incompressible bands that exist at the edge). This is in

contrast to the situation in the IQHE, where a one-to-
one correspondence exists between edge channels and
bulk Landau levels. In the FQHE an infinite hierarchy
of energy gaps exists, in principle, corresponding to an
infinite number of possible edge channels —of which only
a small number (corresponding to the largest energy
gaps) will be realized in practice.

The current I„=(e/h )hp (v„—v~ ~ ) injected into
edge channel p by the reservoir follows directly from Eq.
(4), on integration over x. The total current I through
the wire is I =P~-~ I~T~, if a fraction T~ of the injected
current I~ is transmitted to the reservoir at the other end
of the wire (the remainder returning via the opposite
edge). For the conductance G:el/Ap one thus obtains-
the generalized Landauer formula for a two-terminal
conductor

hg=
2
6= g TpAvp,

e I -i
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which difI'ers from the usual Landauer formula by the

presence of the weight factors hvp—= vp
—

vp l. In the

IQHE, Av~ =1 for all p so that the familiar formula with

unit weight factor ' is recovered. Note that if Tp 1 for
all p, then Eq. (5) reduces to g = vp which is the accept-
ed expression for the quantized two-terminal conduc-
tance in the FQHE.

A multiterminal generalization of Eq. (5) for a two-

terminal conductor is easily constructed, following
Buttiker: '

2 DEG

e e ~
h p

Pp

T~p = g Tp ~pkvp
p l

(6a)

(6b)

(a)

Here I is the current in lead a, connected to a reservoir
at electrochemical potential p „and with fractional
filling factor v, . Equation (6b) defines the transmission

probability T,p from reservoir P to reservoir a (or the
refiection probability, for a=P), in terms of a sum over
the generalized edge channels in lead P. The contribu-
tion from each edge channel p =1,2, . . . , Pp contains the
weight factor Avp vp vp —

l and the fraction Tp, p of
the current injected by reservoir P into the pth edge
channel of lead P which reaches reservoir a. Apart from
the fractional weight factors, the structure of Eq. (6) is

the same as that of the usual Buttiker formula, ' Note
that (in contrast to the anticipation in Ref. 10) the
weight factors hv„are not in general given by e*/e (with
e*—=e/q the charge of the quasiparticle excitations in a

lead at fractional filling factor p/q). The physical origin
for the absence of a one-to-one correspondence between
the edge-channel weight and the charge of the excita-
tions of the incompressible FQHE state is that the edge
channels themselves are not incompressible. I will re-
turn to this important point at the end of this paper.

In the experiment of Chang and Cunningham, ' a
negatively biased gate is placed across a segment of a
narrow 2DEG, which has the eA'ect of locally reducing
the filling factor. Consider the case that the chemical
potential lies in an energy gap at v= vp in the part of the
2DEG not covered by the gate, and at v = vp ( vp un-

derneath the gate. The arrangement of edge channels
and incompressible bands is illustrated in Fig. 2(b). It is

assumed for simplicity that the potential barrier created
by the gate is suSciently smooth that scattering between
the edge channels can be neglected. All transmission
probabilities in this regime of adiabatic transport are ei-
ther 0 or 1: Tp=l for 1 ~p~P', and Tp=0 for
P' (p ~ P Equation (5) then tells . us that g= vp, as
found experimentally. '

In the experiment of Kouwenhoven et al. ,
' a four-

terminal measurement of the Hall conductance GH ——(e /

h)gH in the FQHE regime is made, in a geometry shown

schematically in Fig. 3(a). One current lead and one
voltage lead contain a barrier. These two leads are adja-

(a) Schematic drawing of the experimental
geometry of Ref. 1. The crossed squares are contacts to the
2DEG. One current lead and one voltage lead contain a bar-
rier (shaded), of which the height can be adjusted by means of
a gate (not drawn). The current flows between contacts 1 and
3, the voltage is measured between contacts 2 and 4. (b) Ar-
rangement of incompressible bands (hatched) and edge chan-
nels near the two barriers, for the case studied in Ref. 1 of

=2
Vbulk 1 ~ VI - Vv —

3

gH =max(vI, vy) ~ vg, (k, (7)

so that the quantized Hall plateaus are determined by
the fractional filling factors of the current and voltage
leads, not of the bulk 2DEG. A more general formula
for gH valid also in between the quantized plateaus is

given in Ref. 1, and is shown there to be in quantitative

cent at the edge of the 2DEG, and separated by a small
distance of 2 pm. Figure 3(b) illustrates the arrange-
ment of edge channels and incompressible bands for the
case that the chemical potential lies in an energy gap for
the bulk 2DEG (at v= vq„~k), as well as for the two bar-
riers (at vI and vv for the barrier in the current and volt-

age leads, respectively). Adiabatic transport is assumed
over the barrier, as well as from barrier I to barrier V
(for the magnetic field direction indicated in Fig. 3).
The Buttiker equations for this geometry in the IQHE
regime have the solution gH =max(NI, Nv), with NI
and Ny the number of spin-split Landau levels occupied
at barriers I and V. Equation (6a) for the FQHE has
the same structure, and thus the same solution, after the
substitution Nl ~ vI y. The Hall conductance is there-
fore given by
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agreement with the experiment.
The concept of generalized edge channels for the

FQHE introduced here is expected to open up a new

class of transport experiments, by analogy with the ex-
periments on edge channels in the IQHE regime. It is

emphasized that the transmission probabilities of the
generalized edge channels in Eqs. (5) and (6) refer to
quasiparticle excitations of the "normal" compressible
bands in the 2DEG, corresponding to regions without an

excitation gap, and not to the quasiparticle excitations of
charge e* of the incompressible bands. For this reason
one would expect (even in the absence of an explicit cal-
culation of the transmission probabilities) that an
Aharonov-Bohm experiment in the FQHE regime would

have the h/e and not the h/e* periodicity, or more gen-

erally that proposed transport experiments'' to directly
measure the charge of the quasiparticles in the FQHE
would measure the normal electron charge e rather than
the fractional charge e*
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