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Frequency Power Spectrum of Temperature Fluctuations in Free Convection
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The behavior of power spectra in a Rayleigh-Benard convection experiment in a helium-gas cell is re-

ported. The high-frequency part of the data for all Rayleigh numbers from 7x10 to 4x10' is fit by a

single functional form, obtained by a natural generalization of a multifractal analysis. Low-frequency

data cannot be fit in this form.
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During the last few years, a series of studies have been
conducted of free thermal convection in low-temperature
helium gas. ' The wide range of Rayleigh numbers en-
ables one to study difl'erent turbulent states and the evo-

lution of various statistical quantities, for example, the
Nusselt number, the histogram of local temperature fluc-

tuations, and the mean velocity field. However, the fre-

quency power spectrum of local temperature fluctuations
has not been studied systematically in the whole range of
Rayleigh numbers. (This power spectrum is the squared
magnitude of the time Fourier transformation of the
temperature fluctuations measured by a given bolome-
ter. ) Power spectra have always been an important as-

pect of turbulence study, but mostly in wave numbers. 6

One of the key results arising from the Kolmogorov
theory of turbulence is that the wave-number power
spectrum has the form

P(k) =k g(k/k ),
where g is a universal function. This result is described
as a result of a cascade of kinetic energy to shorter wave-

lengths followed by dissipation at short distances. Here
the dissipation wave number kd is expected to vary as a

power of the Reynolds number. However, except for sit-
uations in which the frozen-flow hypothesis' is reason-
able, not very much is known about the relationship be-

tween wave-number and frequency power spectra.
The main spirit of the experiment has already been de-

scribed in previous reports. ' ' In this paper, we present
results from a new cell of a diameter 20 cm and height
40 cm. With this cell, we can reach Rayleigh numbers

up to 1x10' . The cell is filled with helium gas at a
given pressure and operated at about 5 K. The cell is

heated from below by a dc power input and the tempera-
ture of its top plate is regulated. The temperature fluc-
tuations at various points within the cell are measured by
bolometers as As-doped Si cubes of about 0.2 mm. The
control parameter in this experiment is the Rayleigh
number R, which is defined as

R =agL 6/vtc,

where a is the thermal expansion coefticient, g is the
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FIG. 1. The power spectra in a log-log scale for R =7.0
x1p, 1.1x1p", 4.0x10, 7 3x1p'0 6.px10'' 6 7x1p'2
4. 1x 10", and 4.3x 10". The curves L and 0 are for the
lowest and highest R, respectively. c0 is in units of x/L-'.

gravitational acceleration, L is the height of the cell, h, is

the measured temperature drop across the cell, and v

and x are the kinematic viscosity and the thermal
diffusivity of the helium gas, respectively.

For a small-aspect-ratio cell, the flow in the center re-
gion of the cell is homogeneous and is believed to be
characteristic of free convection flow. Therefore we shall
focus our discussion on the frequency power spectrum
P(co) for the temperature fluctuation signal at the center
of the cell. The high-frequency end of each power spec-
trum is cut ofl' by noise at about 10 Hz and the frequen-
cy range is about 3 decades. In the discussion below, the
frequency to will be given in unit of tc/L, and the power
spectrum P(to) will be normalized so that its frequency
integral is one.

Figure 1 shows a series of power spectra at Rayleigh
numbers ranging from 7X10 to 4X10' . The region at
very low frequency reflects the motion of the largest
scales. The flatness of the power spectra at low frequen-
cies may be interpreted as a manifestation of a cutoff at
the size of the cell. In the region of the previously intro-
duced soft turbulence (R (10 ), the power spectrum
drops sharply with frequency immediately after the flat
region. The lack of a power law between the flat and the
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FIG. 2. Iog~p[P(e)/Pq] vs Iog~p(e/col, ) for R =7.0X10,
2.1x10', 1.1x10', 6.0x10', 4.0x10', 2.5x10', and 7.3
x10' . The curve L and H are for the lowest and highest R,
respectively.

sharp drop region suggests there is no inertial cascade.
The whole spectrum, except for the flat region, can be
described as

P(ro) =Pq exp[ —(rp/rpi, )~], (3)

where Pq, rpi„and P are parameters (P =0.55+'0.05).
As the Rayleigh number increases above 10 and into

the hard turbulence regime, the tails of the power spec-
trum still retain the shape defined by Eq. (3) up to
R 7 && 10' . This similarity in the tails makes it attrac-
tive for us to plot those power spectra together, with

their high-frequency part superposed, and study how the
lower-frequency part evolves with Rayleigh number.
Figure 2 is a plot of log~p[P(ro)/Pq] vs logip(ro/cog) for
seven different Rayleigh numbers between 7 & 10 and
7& 10'p. Figure 3 shows the dependence of col, and Pq in

Eq. (3) upon R. Note that the power spectra in Fig. 2
are superposed by a relative translational transformation,
i.e., a shift of log1p(rod) along the X axis and a shift of
log~p(Pp, ) along the I'axis. All the power spectra exhibit
the very same high-frequency behavior. Moreover, the
straight-line region of the power spectra shows that there
is a power law developed between the flat low-frequency
cutoff and the sharp drop at high frequencies. The ex-
ponent of the power law is —1.4 ~ 0.05, which is

surprisingly the same as the —
& predicted by Bolgiano

and Obukhov for the wave-number power spectrum in

thermal stratification. Changes in the Rayleigh number
change only the range of this power law. The difference
between the regimes of hard turbulence (R & 10 ) and
soft turbulence (R ( 10 ) is that the range of the power
law is almost zero in the latter case. As shown in Fig. 3,
cop increases faster than R at low Rayleigh numbers
and approaches R as the Rayleigh number goes to
7x 10' . On the other hand, the characteristic frequency
co~ for the low-frequency cutoff is known to vary as
R . The dependence of co& and mz on the Rayleigh
number is consistent with the fact shown in Fig. 2, that
the range of the power law increases with the Rayleigh

FIG. 3. A log-log plot of col, /Rp' and P&Rp' vs the Ray-
leigh number. col, and Pp have been calculated from the slope
and the intercept of the straight line in the log[P(co)] vs co

plot. The X coordinate is chosen as col, /R ' to compare mi,

with m~, which varies as R '. The Y coordinate is chosen ac-
cordingly.

number, and saturates as the Rayleigh number reaches
7x 10

Thus, the power spectrum P(ro) for R ~7X 10'p can
be represented by a scaling form akin to that of Eq. (I):

P(ro) =Pp exp[f(ni/nip)] . (4)

log [P(rp)/Pp]

log(R/R, )
(sa)

and the horizontal axis as

log (co/Np )
Iog(R/Rp)

' (Sb)

where Ro, Po, and coo are Rayleigh-number-independent

The decay of the power for high frequencies, which must
be a result of the dissipation of the turbulent motion, can
be described by Eq. (3). A power law with an exponent
of about —1.4 appears at lower frequencies. Thus, these
parts of the data show a scaling behavior.

As the Rayleigh number increases above 7&&10'p, the
range of the —1.4 power law saturates. But now the
data reduction of Fig. 2 no longer works, since the form
of the high-frequency part of the power spectrum is no

longer independent of Rayleigh numbers. Figure 4(a)
shows power spectra for Rayleigh numbers between
7X 10' and 4&10'; after a relative translational trans-
formation, it is clear that the different spectra have quite
different curvature. The specific transformation in Fig.
4(a) is chosen for the best illustration. However, there is

once again a simple way to bring all these high-Ray-
leigh-number data together. Figure 4(b) shows that all
these power spectra collapse under the following trans-
formation:" Take the vertical axis as
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parameters which are chosen as

Rp =1 x 10, Pp = (5.8 % 0.7) x 10

cop=(1. 1 ~0.2) x10

The most important parameter among the three is Rp,
which decides how much the curve, at a given Rayleigh
number, should be bent under this transformation. Pp
and cop merely determine the relative positions of each
curve. Since the transformation depends on log(Rp), it
is not very sensitive to Rp. Rp being any value between
8 x 10 and 8 x 10 leads to good superposition, but Rp
=1 x10 is slightly better. It is interesting that Rp is
about the Rayleigh number of the transition from soft to
hard turbulence in this system. This data reduction is
invariant under the change of Pp to Pp(R/Rp) ' and cop

to cop(R/Rp)o, since this only leads to a change of the
common origin. y and P are zero in the transformation
(5a) and (Sb)

We conclude that there is also a simple relation among
the power spectra taken in the range R & 7x10' . The
data suggest the possibility of a universality in the plots
of f vs a for different Rayleigh numbers. But notice that
because of the limited dynamical range of the data, the
larger the Rayleigh number, the smaller the range on
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FIG. 4. (a) log~o[P(co)Ro'l vs log~o(co/R ') and (b)
)og[P(co)/Pol/)og(R/Ro) vs log(co/coo)/log(R/Ro) for R 7.3
xlp o, 6.pxlp, 6.7x]p' 4. lxlp 3, and 4.3xlp'
lowest R data in (a) is the up curve, and in (b) the curve span-
ning the whole range.

Fig. 4(b) covered by the power spectrum. So we cannot
be sure that the apparent universality of the plots shown
in Fig. 4(b) will really carry out at very large Rayleigh
numbers.

So far, our description of the experimental results
above show there are two regimes, one for R ~ 7x10'
with a generic relation between log[P(co)/Pq(R)] and
log[co/col, (R)], and another for R» 7X10' with a gen-
eric relation between log[P(co)/Pp] divided by log(R/
Rp) and log(co/cop) divided by log(R/Rp). However,
they can be combined into one overall relation between a
generalized f and a defined by

log [P (co)/Pp ]
6a

log (co/cop )a= 6b

P(co+dco) =P(co) 1
— g(a) (7)

where a is given by Eq. (6b). The basic assumption is

that a is an appropriate measure of the frequency inter-
vals in which a universal form of attenuation might
occur. Then the integral of Eq. (7) gives

log(co /cop )
P(co) =Ppexp —,g

N 5 (8)

where Pp is a constant, m] stands for a certain low fre-
quency, and the noh is a parameter. If the integral of
g(a) with respect to a is f(a), then Eq. (8—) implies
our result

log (co/cog )
P(co) =Pqexp Sf S

We expect the function f(a) to be independent of the

where S is a scale factor for logarithmic frequency inter-
vals. For R ~ 7x10', S is a constant of log(7X10' /
1 X 10 ), and Pp and col, have the values given in Fig. 3.
For R ~ 7&10, S =log(R/Rp), and we take Pq =Pp
x(R/Rp) ", cop =cop(R/Rp)~, where y and P may be
chosen to match the values of Pp and col, of R ~ 7x10' .
With these choices of parameters, we can fit all the data
in the entire range of Rayleigh numbers by a single func-
tion f(a): Since the power spectrum for R =7 X 10'p fall
equally well on Figs. 2 and 4(b), which are for two
different regions of Rayleigh numbers, the two curves
must be identical, within the experimental error. Figure
5 is part of the combined f-a plot.

To reveal more about this multifractal, let us imagine
the cascade from a given low frequency to higher fre-
quency. This cascade will induce an attenuation of the
amplitude of the power spectrum. Assume that as the
frequency is raised from co to co+Ceo the power is at-
tenuated by an amount proportional to the change in the
logarithmic frequency interval via
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FIG. 5. f-a plot for data of R=2.1&10', l.1x10s, 7.3

is shifted to be the same as that of Fig. 4(b). The curve L of
R 7.3x10' and H of 4.3x10' are also shifted arbitrarily
along the Y axis to compare with the two power laws.

so, we might foresee an interesting generalization of
Kolmogorov's picture of turbulence. On the other hand,
the fits are not perfect; for example, there are three ad-
justable parameters for the spectra at low Rayleigh num-
bers (i.e., Pi„cus, and a low-frequency cutoff), and the
experimental data for very high Rayleigh numbers cov-
ers only a small range of the f-a curve. The physical
significance to R =7x10', which marks the division be-
tween the two curve fits, is not understood. Further-
more, our theoretical discussion introduces the scale of
frequency in a rather ad hoc fashion. It may well be
that the apparently good fits give a deceptive view of the
processes involved. We do not know.

We would like to thank Lei Wu, Victor Yakhot, An-
ton Kast, and Gianluigi Zanetti for very helpful discus-
sions. This research has been supported by the Universi-

ty of Chicago, Materials Research Laboratory; the ex-
perimental work is also supported by NSF under Grant
No. DMR-8722714.

Rayleigh number, but rug, Ps, and S may be Rayleigh-
number dependent.

However, it seems that for R & 10', the power spec-
trum tends to develop a second power law with an ex-
ponent —2.4+ 0. 1 at higher frequencies. In the mag-
nified f-a plot, Fig. 5, two power laws are compared with
the power spectra. If there were two power laws, this
would contradict the multifractal fit for this range of
Rayleigh number. However, we cannot sharply distin-
guish between the multifractal possibility and the two
power laws since the high-Rayleigh-number data are
squeezed to a small piece of the f-a plot under the trans-
formation (6a) and (6b). From our reading of Fig. 5,
there are two options: Either the multifractal property
of the power spectrum is the asymptotic one for very
large Rayleigh number, or it is an intermediate property
as the power spectrum develops from one power law to
two power laws. Maybe we are seeing the first hints of a
new regime of turbulence arising above R =10' . We
need to reach higher Rayleigh numbers and attain a
larger dynamical range before we can sharply distinguish
between these possibilities.

Yakhot' has shown how much of the data from the
smaller cell could be rather well fitted by a slow cross-
over between two power-law regimes. These earlier data
can also be fitted by the multifractal analysis described
above, with the very same fvs a.

In conclusion, we have fitted the high-frequency part
of the power spectra for all Rayleigh numbers from
7 x 10 to 4 x 10 ' by a single functional form, obtained
by a natural generalization of a multifractal analysis.
The low-frequency data are not included in this form.
Perhaps, on one hand, this fitting might be considered to
be indicative of a remarkable universality which appears
in the highly dissipative part of convective turbulence. If
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