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A renormalization-group fixed point is found, corresponding to chaotic mixing in the Rayleigh-Taylor
instability problem. The outer envelope of the mixing region, adjacent to the heavy fluid, is dominated

by a merger of unstable modes (bubbles of light fluid) and dynamically changing length scales. A sta-
tistical model is introduced as an approximation to the full two-fluid Euler equation to describe the mix-

ing envelope. Molecular-chaos and continuous-time approximations to this model define an approximate
renormalization-group equation, which is shown to have a nontrivial fixed point.

PACS numbers: 47.20.—k

We construct a renormalization-group fixed point to
describe a chaotic mixing process. The Rayleigh-Taylor
mixing problem is the study of the dynamic evolution of
the interface between two fluids of difl'erent densities,
subject to a gravitational or accelerating force. In the
unstable case, nonlinear modes in the interface grow and
a mixing layer develops. Here we study the outer en-

velope of the mixing layer adjacent to the heavy fluid.
For simplicity, we consider a two-dimensional flow,
hence a one-dimensional interface. The existence of a
renormalization-group fixed point is suggested by the ap-
proximate universality of experimentally observed' and
numerically computed mixing rates. This Letter
presents the first theoretical evidence for this fixed point.

The statistical model results from a simplification of
the dynamics defined by the two-fluid Euler equation.
The state space of the model is the set of piecewise con-
stant functions on the line, each constant piece represent-
ing a single bubble. We are interested in a "molecular-
chaos" version of the model, in which nearest-neighbor
correlations between adjacent bubbles are ignored. (Pos-
sible limitations to this hypothesis have been discussed. )
At this level of description, the state space is an ensem-
ble of bubbles whose heights are defined by a probability
measure on the line. As we will see below, this measure
must be concentrated on a bounded interval defined by a
bubble merger criterion given below. As a further as-
sumption, we take the measure to be a uniform distribu-
tion of an interval [—a(t)+h(r), a(t)+h(t)]. Uniform
distribution on an interval is not preserved dynamically,
and so we modify (approximate) the dynamics to
preserve this assumption. For simplicity, we assume that
the bubbles have a common radius r(t) at time t. We
are interested in the variance cr(r) of this ensemble,
defined by the equation o =f(h —h) dh/2a. Thus
a= J3cr. The essence of the molecular-chaos approxi-
mation is to consider pair interactions by drawing two

adjacent bubbles randomly from the ensemble, or
equivalently to regard nearest-neighbor pairs as having
uncorrelated heights h 1 and h2.

The dynamics of the statistical model, as explained
below, treats bubble merger as an event which is discrete
in time. We approximate this discrete dynamics by con-
tinuous dynamics, and obtain a differential equation for
r, h, and a. These equations are most conveniently stud-
ied in terms of scaled variables. Following conventional
scaling assumptions, we let h' (h —h)/r and o'=o/r.
We introduce h' as the scaled height separation of adja-
cent bubbles at which merger occurs and t i (h 2—h I ) as the time to merger for adjacent bubbles with
initial height separation h 2

—h I, where h 2 ) h I. Let g
be the gravitational acceleration and A be the Atwood
number. Then dt' (Ag/r) 'l dr is the scaled dif-
ferential time and v' (Agr) 'i v is the scaled velocity.
Also t' (Ag/r)'l t is the scaled time to merger
Thus t' (h' ) 0. It is convenient to set t' (h') =ee for
h'(0, and t' (h') =0 for h') t'. h' and i' determine
the dynamics in the approximation we are considering,
as we explain in detail.

The dynamics of the statistical model is that at merger
height separation h' the higher bubble doubles in size
(merges with its neighbor) while the lower bubble is re-
moved from the ensemble. Before merger, each bubble
moves with a scaled velocity v'=vb+ v,', which is a sum
of a scaled single bubble velocity vb and an envelope ve-

locity v,'. This expression for the bubble velocity rep-
resents an essential modification of the original Sharp-
Wheeler model, because it eliminates a phenomenologi-
cal parameter from that model, and leads to a renorm-
alization-group fixed point. In the spirit of the mole-
cular-chaos approximation, we ignore here the fact that
each bubble has two neighbors. Here vb is an absolute
number, the single bubble terminal velocity. It is nearly
constant and depends only weakly on two dimensionless
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parameters, the Atwood number A and the compressibil-

ity M of the two-fluid Euler equation, while v,'=v,'
x (h 2

—h ( ) depends on h2 —h I in addition.
Let a'=a/r, (F(h')) =fF(h')dh'/2a', and &F(hl,

h2)) =fFdh(dh2/(2a') . In this notation, the equation

dr/dt = (Ag) ' (1/t '
)r '

expresses the hypothesis, in the continuous-time approxi-
mation, that the higher bubble from a nearest-neighbor
pair doubles in size at the end of its merger time interval.
This scaling is based on a picture of the merger process
in which the radii of the two neighboring bubbles are
frozen until merger is completed. Thus the time-
dependent radius r(t) applies to the ensemble, but not to
the pair of bubbles selected from the ensemble for
merger. The same picture is used below to determine the
bubble velocities.

The foregoing discussion, which specifies the statistical
model and the approximations, leads to the fundamental
dynamical equation for dh'/dt'. This equation includes a
contribution from vb and a statistical contribution from

v,'. The dynamics for h' can be formulated either
through its action on the stochastic variable h' or, by du-

ality, on the probability measure which defines the distri-
bution of h'. It is convenient to use both of these formu-

lations, for distinct terms in the equations. Let G be a
function of h' and let F =c)G/Bh'. The result is

G h( . . . , + , G h)

The first term is the uniform drift in h' from the single
bubble velocity vb, it is straightforward. The remaining
terms derive from the envelope velocity v,'. The second
term is the contribution from merger for a bubble that is

higher than its neighbor. It is expressed in terms of the
action of the dynamics on the stochastic variable h'.

Merger, per se, has no eAect on the height of the higher
(surviving) bubble. However, the instantaneous envelope
velocity v,', applied to the higher bubble, time averaged
from the present to the time of merger, can be computed
as —, A(height separation)/tI(, (time). This time-averaged
instantaneous scaled envelope velocity is the fraction
(h' —h2+h()/2t' (h2 —hI) in the second term.

The third and fourth terms are the contributions to
merger for a bubble below its neighbor. In these terms
the dynamics is expressed in terms of its action on the
measure. The third term corresponds to removal of the
bubble from the ensemble and the fourth to its replace-
ment with a bubble drawn at random from the ensemble.
Consider the third term. The integral over h2 is the
probability per unit time for a bubble of height h I to be
removed from the ensemble by merger. This is then in-

tegrated over all bubbles in the ensemble, i.e., over hI.
The fourth term adds back a bubble in a probabilistic
sense. Since (1/t') is the probability per unit (scaled)
time for removing a bubble of height h I, integrated over

h~, i.e., the total probability per unit time of removing a
bubble, the fourth term establishes conservation of prob-
ability. For all terms, the envelope dynamics is not given

by the instantaneous velocity v,
' combined with merger

dynamics, but instead this velocity is time averaged up to
and including merger. This is the continuous-time ap-
proximation, used also in (1).

We take G =h/r and F=I and obtain

d(h/r), 1 h(I( hz+hI h(=vb+-d)' 2 ) (h( h() ')'(h( h() )
Similarly, with G =(h') /2 and F =h', we have

I

dt a t'
&
—h~ 2 " 2a t p 1

2 t

(2)

(3)

The natural interval for cr' is given by 0 ~ a'(t)
~ h'/2. The lower limit is the trivial fixed point corre-
sponding to an unstable interface consisting of bubbles of
identical height. At the upper end point, defined by in-

stantaneous merger for bubble pairs with extreme sepa-
ration, the renormalization-group equation directs the
flow into the interval. We show that the right-hand side
of (3) is positive at the lower end point, discontinuous at
the upper end point, and negatively infinite for a'(t)
& h', i.e., above the upper end point. The existence of a
nontrivial renormalization-group fixed point follows.
The undesirable discontinuity at the upper end point is

probably related to the artificial choice of a uniform den-

sity for the height distribution.

At the upper end point, t' =0 and (1/t')=~. We
note that in a one-sided neighborhood of the upper end

point, h' —h2+h( =0(tm(hq —h()), since the scaled
envelope velocity is bounded. Above the upper end

point, i.e., for a'(t) )h', this term is zero. Thus the
first term in (3) is bounded as a' h'/2. The second
and third terms have a negatively divergent integrand in

this limit, proportional to —(a') +(cx') = —2(cr'); the
integral is, however, finite. Above the upper end point,
the integral is determined by the set of instantaneous
merger, and is negatively infinite. Thus the behavior of
(3) at the upper limit is as asserted.

At the lower limit, t„', is proportional to —ln(h2 —hI)
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and thus to —lno'. This asymptotic property follows

directly from the linear theory of exponential growth,
valid for small disturbances, as applied to the bubble en-

velope. The second and third terms are thus
O(o'~ Ino'~ '), and are negligible in comparison to the
first term, which is O(~ Incr'( '), due to the term h'
=O(1) in the numerator. The first term contains contri-
butions of both signs, but is dominantly positive, since t '

is supported on the set h2 ~ h I. This proves our asser-
tion concerning the lo~er limit.

Next, we discuss the properties of the fixed-point solu-
tion, and its relation to available experimental and com-
putational evidence concerning the bubble envelope. Let
( . ) ~ denote the expectation evaluated at the renorm-
alization-group fixed point o . Solving Eqs. (1) and (2)
with o'=cr yields r(t) =(Ag/4)(1/t ' ) .t, and

An extensive body of experiment, ' computation based
on the full two-fiuid Euler equations s and a computa-
tion ' based on theoretical models, predicts that
h =aAgt (constant acceleration), and comparison with

(4) shows that in our model"

a renormalization-group fixed point. We obtain a purely
theoretical explanation of constant acceleration and the
first direct evidence in support of a renormalization-
group fixed point to describe the outer envelope of the
mixing region for a Rayleigh-Taylor unstable interface.
The implications of universality for a fixed point go
beyond the value of a. Other aspects of the fixed-point
ensemble, such as the variance of the bubble heights,
would then be expressible in a universal fashion. Such
conjectures, easily derivable from this model, can be test
ed directly against experiment and numerical simulation.
The full statistical model could be solved numerically,
without approximations, and would provide a check on
the approximations made here as well as giving predic-
tions concerning higher moments.
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(5)

Computations'4 of the value of a by the front-tracking
method, based on the Euler equation, agree with experi-
ment, ' within experimental accuracy, beyond the time
of one bubble merger. According to the above results,
the constant a appears to be at least approximately
universal.

The scaling nature of the bubble merger process and

the resulting interface dynamics, which involves all

length scales on a dynamically increasing basis, and the
apparent universality of a which describes this dynamics,
suggest the occurrence of a renormalization-group fixed

point as a consistent explanation of the phenomena. We
note that vt', is independent of A and g and depends
only weakly on the compressibility M . It would be pos-
sible to explore the other term in (5) and the factor
(1/t '

) ~ to see if they also have a universal character.
Our results show that constant acceleration for h is a

direct consequence of simple scaling and the existence of
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