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Model of a Fragmentation Process and Its Power-Law Behavior
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A simple model for understanding the qualitative features of a fragmentation process is proposed. At
a particular point of a tuning parameter of this model, the fragment-size distribution has a scale-
invariant power-law behavior. At relatively low values of this parameter, evaporation modes dominate
and at high values of the parameter, multifragmentation takes place. The model is exactly soluble in all

regimes of the tuning parameter. A unifying connection between evaporation and multifragmentation is
found.

PACS numbers: 25.70.Np, 02. 10.+w

Many phenomena in nature show a power-law behav-
ior in the distribution function of some quantity. A few
examples in physics are the size distribution of meteor-
ites, the distribution of cluster sizes at the percolation
threshold, droplet sizes at a critical point, and sandpile
slides at a self-organized critical point. Power laws in

energy and in frequency are also observed, such as in 1/f
noise. In other areas of endeavor similar behavior has
been noted, such as in the frequency distribution of
words in a book when each word is ordered such that
N=1 is the most frequent word, N=2 is the next most
frequent word, etc. The frequency distribution then falls
as 1/N.

In many cases the power law is a tabulated or empiri-
cally observed property of the system whose origin is not
well understood. The purpose of this Letter is to present
a model in which an exact power law is obtained at a
critical point in the value of some tuning parameter,
called x. Moreover, the model is exactly soluble for all

values of x. As the parameter is varied from small to
large values of it, a single and simple expression shows a
system passing from evaporation modes to scale-
invariant behavior to total multifragmentation. The
model presented here arose out of some studies of the
multifragmentation of nuclei in heavy-ion collisions
where a power law was also seen experimentally. An

application of the model to nuclear fragmentation will be
given at the end of this paper, where x will be related to
thermodynamic variables such as volume V and tempera-
ture T. The model is then an exactly soluble canonical
ensemble model of nuclear fragmentation. This model

may have applications for understanding similar behav-
ior in other systems.

The model considers the partitioning of A objects into
groups with n, composites or clusters of j elements and

j=1,2, . . ., A, where A =Pin, The parti. tioning of A ob-
jects into such groupings can be related to a well-known
problem in number theory which is the decomposition
of an integer A into integer summands such as

The notation trz =(1 ', 2 ', . . . ,j",. . . ) is used to speci-
fy the decomposition. 2 will represent a composite made
of two elements so that 5 =3+2 is the decomposition of
5 into two composites, one with two elements, the other
with three elements. Such partitioning also appears in

the classification of permutations by cycle classes, with a
cycle class being specified by (ni, n2, . . . , n, , . . ) =. [nJ},
which has nl unit cycles, n2 cycles of length two, etc.
The multiplicity m of a given fragmentation, partition,
or decomposition is m =QJnt. The total number of par-
titions of A is given asymptotically by the Hardy-Rama-
nujan result P(A) =exp(tr J2A/3)/4A J3. Each possi-
ble partition, specified by [nij, is then given a certain
weight and the distribution of clusters is obtained by en-
semble averaging n, over all partitions z~ using this
weight. Various possibilities for weights will now be
given. Different choices define different models of frag-
mentation. One weight will be shown to lead to an ex-
ponential falloff in the cluster distribution with size k
while another leads to a power-law behavior.

The first assumption to be made is that every partition
is equally likely. It was noted by Sobottka and Moretto
that the frequency of clusters of size k, Yz(k), is Yz (k)
=P(A —k)+P(A —2k)+ . Then, using the Hardy-
Ramanujan result for P(A —k), etc. ,

1 1

4~3A exp[(tr/2)(2/3A) ' k 1
—

1

exp[ —(tr/2) (2/3A ) ' k]
4A J3

This Bose-Einstein-like distribution is the result obtained
by Aichelin and Hufner' in their description of frag-
mentation.

Another situation arises by considering a microstate
counting factor for each partition. One weight which
gives an exact power-law result is an assignment M2 for
each partition where

M~([ntlt;A) =M2(ni, n~, . .;A).
5 =4+ 1 =3+2 =3+1+1 =2+2+1

=2+1+1+1=1+1+1+1+1.
A!

1 'nlt2 'n2!. . . A "n~!
(2)
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nest's are Gibbs factorials. M2 represents the number of
permutations of 3 objects into a particular cycle class

(n~, n2, . . . , n, , . . . ). The probability of a given parti-
tion, cycle class, or fragmentation is then P(n~, n2, . . . )
=Mq(n~, ni, . . . .

,A)/A!. For this weight the frequency of
k is then an exact 1/k power law:

Yg(k) =gnkP(n )n2, . . . ,
.A) =1/k (3)

ZA

and is independent of A, i.e., of any scale set by A except
the trivial constraint k ~ A which is not the case of Eq.
(1) where JA sets the scale. It should also be noted that
this simple result has the same functional form of Zipf's

law, both having a hyperbolic form. The result of Eq.
(3) also has the same functional behavior of the sandpile
distribution function D(s) given in Ref. 4 where s is the
size of the slide, i.e., D(s)-s at the self-organized
critical point.

In the next level of complexity, a tuning parameter x
is introduced into the weight function. Specifically, let

W„([n,x, l) =My+ x ', (4)
g~l

with M i given by Eq. (2) and let W~ ([x;l)
=Q,„W&([n,, x, l), which is also the cycle indicator of
the permutation group. The generating function for

Wq([x~l) is

X2 3 x3
exp uxl+u' +u' +2, 3,

= g W, ([x,l) ", (5)
~-o

which plays the role of the grand-canonical ensemble

partition function. A very interesting result follows

when all x, =x. With m =gn, , W~([n, l, x) =M2([n) )
xx"', and when M~([njl) is summed over all partitions
with a given m, the resulting quantity is the signless Stir-
ling number of the first kind ( —1)" "'Sz'. They are
generated from a fractorial-moment generating function

x(x+1)(x+2) . . (x+A —1) = g ( —1)" "'S"'x"'

and they satisfy a recurrence relationship S„+~=S„
—nS, . The normalized probability of a given fragmen-
tation is now Mz([n~l )x /x(x+ I) (x+A —I). The
role of the tuning parameter x is as follows: The M2
combinatorial factor favors low-multiplicity events with
evaporation (n~ =I, n~ ~

=1) having the highest M2
weight and the fused system (n~ =I) the next most
highest M2 weight. For x«1, the fused mode (m -I)
has one power of x, while the evaporation mode (m =2)
has x, so that the fused mode dominates. As x in-
creases the weight function shifts the mode of decay into
evaporation and other m 2 situations. With still larger
x the system fragments into other complex fragmenta-
tion schemes. At x=1, the frequency distribution of the
fragmentation scheme, as measured by its mass distribu-
tion, is given by a scale-invariant power law [Eq. (3)l.
At x»1, complete dissociation becomes the dominant
mode of decay. The parameter x must therefore involve
binding-energy, temperature, level-density, and volume
effects, and this dependence is given below.

The result for the frequency of k at any value of x can
be found analytically. Letting this quantity be Yz(k, x)
and using the generating function W~ ([x~l ) for
W~([ , ,nlx) and the result of Eq. (5), the following ex-
act result is obtained:

gA —k( I )8 —k+mSm m+1

Y, (k,x) =-
k (A —k)! x(x+ l)(x+2) (x+A —1)

A!xr(x+ A —k)
k (A —k)!I (x+A) (6)

where the I functions are given by I (z+1)=z!. For
k =A, the sum in Eq. (7) is to be taken as x. The result

of Eq. (6) is obtained by differentiating these generating
functions with respect to the x, 's. At x=1, the scale-
invariant power law of Eq. (3) follows. At x=1, the

mean multiplicity m —lnA + y, where y =0.577 21 is

Euler's number; lnA-5. 3 for 3 =200. Putting x =1+t.
generates the critical-point behavior. In particular, when

x = I+a the coefficient of c" in the numerator of Eq. (6)
is B„(A—k)+ B„~(A —k), where B„ is a binomial mo-

ment of the multiplicity distribution. The resulting yield

near x =1 can be shown to be

1+cg~ (k) + 0(e )
Y,g k I+a(l+ —, + —, +. . . +1/A)

!
While the first form of Y~(k) is exact to order e, the
exponential form is valid only for k«A with e=x —x,
and x, 1. c is similar to the p —p, of percolation mod-
els. gz(k) is given by gz(k) =1+[1+—,

' + —,
' + . I/

(A —k)l(I —bk, ~) so that g~(A) =I, g~(A —1)=1+1,
g~(A —2) =I+ I+ —,', etc. At a=0, gkk Y~(k) =A
x(A+ I)/2-A /2. For any e or x, A =gkkY&(k).
Also for a =0, (n~ ) = I at A =1, (n~ ) =2 for all other A,
and (n ~ n, ) = I for r &A & I &r.

When the tuning parameter is very large, x))A, the
results are

1Y, (k,x»A)—
(A —k)! kxk ' k

1 ek——exp
k

(7)
Y„(l,x»A)-A.

The result Y~(l, x&&A) A is the condition for com-
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piete fragmentation into individual pieces and the mean

multiplicity m A. At the other extreme of small
values of the tuning parameter, x&(1, and in particular
for x & 1/(y+lnA), Y~ (k,x) is given, to lowest order in

x, by

Y, (A, x «1)—1
—(lnA+ y)x,

Y~(k, x&&1)-xA/k(A —k) .

(9)

Note also that the multiplicity shifts from m-2 to
m-lnA to m-A as the transition is made from eva-

poration to power behavior to total fragmentation.
At x=1, the multiplicity distribution is given by the

signless Stirling numbers of the first kind. Moments of
the probability distribution for the multiplicity distribu-
tion P(m, A) =(—1)" "'Sz/A! can be easily obtained
and, in particular, factorial moments defined by F„
=g„,m(m —1) (m —n+1)P(m, A) are simply
evaluated F„=n!Cq~'~~/A!, where C~ =(—1)" S~.
As an example, F~, the mean multiplicity, is given by
F~ =1+ —, + +1/A-lnA+y for large A. The mean

size of a cluster is then -A/lnA. Higher moments can
also be obtained from the recurrence relationship B„(A)
=B„(A—1)+A B„ 1 (A —1), where the binominal
moments are B„=(1/n!)F„. The variance is V2(A)
= —+ =' + + (A —1)/A . Other weight functions

(not normalized) of the form W({nJ])=Mi({nl])x y"'
are also soluble and such results will be considered else-
~here.

The present model can be used to study general
features of cluster distributions produced in various pro-
cesses in different areas such as those discussed at the
beginning of this Letter. A specific application will now

be given to nuclear fragmentation as an illustration. In
the nuclear case, a weight W for each fragmentation
({nJ]) can be specified by the exponential of the entropy
S associated with that fragmentation, W-exp(S/ke).
A model for the entropy is then made and one possibili-
ty" is the Sakur- Tetrode expression:

S =+ken, ln {[V/vp(j)]e Z;„,(j)/nj] . (10)
J

V is the volume of the system and vp(J) =h '/
(2n'M~k T) . Z;„,(j) =exp[E& (j)/ke T]+exp( —E*/
keT) is the internal partition function of a cluster of size

At x =0, Yz (A, O) =1 and only the fuse mode is present.
Y~(k,x &&1) for k&A is a U-shaped behavior in k with a
minimum at k =A/2. Note that evaporation of a unit

produces one cluster of size 1 and another of size A —1.
For x«1, the fused mode dominates and the mean mul-

tiplicity is —I. For x between 1/(lnA+y) and 2/(lnA
+ y) the m-3 modes dominate and their distribution is

asymmetric with k. The contribution of different m

modes can be found from

S.",=(A -k)![1 +ln(A —k)]"-'/(n-1)! .

j. The sum is over excited states E* A weight function
of the form of Eq. (4) with x~ =x evolves when the bind-

ing energy Ee(j) is simply taken to be a backshifted
form Ez(j ) =a&(j —1). For this choice, thej =1 mono-

mer has no binding and Ee(j)/j saturates at aii. Also
light clusters have a reduced Ee(J)/j. The excited-state
partition function in a Fermi-gas model' has an ex-
ponential part -exp[a(j)/k&T], where a(j)-j/ep with

ep the level-density parameter. Also, a(j) is then back-
shifted to suppress the j=l monomer case so that a(j)
=(j—1)/ep. The Fermi-gas result can be cut off by set-

ting T=TTp/(T+ Tp) as discussed in Ref. 13. The tun-

ing parameter can be shown to be of the form

x =[V/vp(1)]e ""'f;., (11)

by comparing the entorpy weight W-e ' with that of
M2x"'. f;,1-exp[ ke TTp/e—p(T+ Tp)] for a cutoff Fer-
mi gas. To obtain the result of Eq. (11)use was made of
the constraint g~n, =A and the definition of m =gn,

Now substituting this choice of x into Eq. (9) gives a
result in Fermi's monograph Thermodynamics' for the
evaporation of particles (k=1) into a volume V which

reads N=g, [V/vp(1)]exp( —WI/keT), where g, is the
spin-degeneracy factor and N is the number of particles
evaporated. WI is the work function. ae equals the sep-
aration energy or work function WI when Ee(j ) =ae
x(j —1). The factor exp( ae/keT) act—s as a barrier
against evaporation. Using this same x, the result of Eq.
(8) is just a form of the Saha equation. ' The Saha
equation and Fermi's evaporation equation are limiting
forms of one underlying equation, Eq. (6). The Saha
equation was used in Ref. 11 to discuss composite-
particle formation in high-energy nuclear collisions. The
volume V is the freeze-out volume" and this volume rep-
resents the largest volume over which equilibrium is

maintained. This volume can be obtained from proper-
ties of the distribution of composite particles or by
resorting to a Hanbury-Brown-Twiss correlation mea-
surement. The equilibrium volume in high-energy
nucleus-nucleus collisions is about 4V~, where V~ is the
normal volume of A nucleons. The barrier suppression
factor for evaporation becomes the Boltzmann binding-

energy enhancement factor of the Saha equation in these
limiting forms of Yz(k, x). Comparing Eqs. (8) and

(9), the reader will note that the role of x moves from a
denominator for multifragmentation (1/x" ') to the
numerator in evaporation. Thus

exp( ae/klan T) 1/ex—p( —aq/ke Tl"

=exp[Eii(k)/kiiT] .

Finally, given the weight for each partition and the ex-
pression for x other quantities associated with nuclear
fragmentation can be evaluated. Here, the focus was on

the cluster-size distribution function. The multiplicity,
fluctuations, and correlations are also easily evaluated in
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terms of the given x of Eq. (I I) and such results will be
presented in a future publication. Other approaches to
nuclear fragmentation can be found in Refs. 10, 13, and
16-19.

The purpose of this Letter was to develop a simple and
exactly soluble model for a fragmentation process which

hopefully captures the essence of various features of
fragmentation. The model gives an exact power-law be-
havior in the cluster-size distribution function at a par-
ticular point of a tuning parameter. Moreover, a single
expression seems to contain a whole spectrum of frag-
mentation schemes from the simplest to the most com-
plex. At low values of the tuning parameter, evaporation
modes dominate and for large values of the parameter,
multifragmentation takes place. The tuning parameter
was then related to thermodynamic variables for a par-
ticular application of the model to nuclear fragmenta-
tion. Work-function barriers against evaporation are
shown to evolve into binding-energy enhancement factors
of the Saha equation and a unifying connection is found
between these limits.
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