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Geometric Phase in the Classical Continuous Antiferromagnetic Heisenberg Spin Chain
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We show that the time evolution of a space curve is associated with a geometric phase. This phase
arises from the path dependence of the rotation of the natural Frenet-Serret triad with respect to a non-

rotating (Fermi-Walker) frame. We derive a general expression in 1+1 dimensions for the phase and
the associated gauge potential, and discuss the application of this formalism to the classical, continuous,
antiferromagnetic Heisenberg spin chain.

PACS numbers: 05.50.+q, 11.10.Ef, 75.1G.Jm

The study of space curves' finds applications in many
areas of physics. As illustrative examples of a space
curve we have (i) a thin nonstretching vortex filament in

a fluid, (ii) a spin configuration in a classical ferromag-
netic chain (the constant-magnitude spin vectors being
the tangents along a curve), and (iii) a twisted optical
fiber. Certain dynamical properties of a space curve
have been studied by Lamb, where it is shown that the
evolution of some simple types of curves can be related
to nonlinear partial difl'erential equations associated with
soliton propagation.

In this Letter we investigate another aspect of the
space-curve formalism by deriving an expression for the
underlying geometric phase associated with the time evo-
lution of the curve. The study of such geometric phases
(introduced in recent literature by Berry ) and the corre-
sponding gauge fields has gained attention in a wide

spectrum of problems in classical and quantum physics. s

Our purpose is to present a general formalism in 1+ 1 di-
mensions in relation to moving space curves and apply it
to the continuum version of the (classical) antiferrornag-
netic chain. This is especially useful in clarifying certain
points in recent literature ' on the geometric phase in

the antiferromagnetic chain. Furthermore, we point out
that if explicit solutions of the space-curve evolution
equation can be found (which is possible in many appli-
cations such as spin chains), our derivation also makes it
possible to investigate under what conditions a class of
solutions like the solitons would imply the presence of a
nonvanishing phase or gauge field. Such insights will be

useful for a better understanding of the nature of possi-
ble topological features in interacting spin systems and
their excitation spectra. Finally, our formalism could
also find other applications such as the evolution of poly-
mer chains and strings.

At a given instant of time, say, up, a spaces curve' is
described by its natural equations: x=x(s), r r(s),
where tr, r, and s are the curvature, the torsion, and the
length (treated as a natural parameter) of the space
curve. We denote by t the unit tangent vector to the
curve and by n and b its principal normal and binormal,
respectively. They are related by the Frenet-Serret for-
mulas:

t, xn, n, = —xt+rb, b, —rn,
where the subscript s denotes d/ds. We also have

tc =t, t, and r t (t, xt»)/x

(la)

(lb)
As time evolves x and r, and thus t, n, b, are in general
functions of both s and u, i.e., x. =x(s, u), r = r(s, u).

For a 6xed s the functions

t, =(xt, n, =(xn, and b, =gxb (2)

The Darboux vector g plays the role of an angular veloc-

icy(u) =t, t„and rp(u) =t (t„xt„„)/x'p,

where the subscript u denotes d/du, represent, respec-
tively, the curvature and the torsion of a new space curve
with u as its natural parameter. Introducing the Dar-
boux vector g = rt+ xb, Eqs. (1) can be written as
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ity of the Frenet-Serret triad. So, e.g. , n and b rotate
around t with angular velocity r. Let us consider a non-

rotating frame in the moving plane spanned by n and 1
using the usual Fermi-Walker parallel transport along
the curve"

DA' = [xbxAl'
ds

a) )

l

I

I

I

l

I

c = (s,u+a, u) d = (s+a, s, u+au)

As we move from sp to sl, a phase 4i =f;,'r(s)ds devel-

ops between the natural frame (n and b) and the nonro-
tating frame. As we move from up to u 1 along the "tem-
poral" space curve, a phase 4p f„",' rp(u) du develops
between the natural frame and the corresponding nonro-
tating frame.

We now consider the space-time evolution of the
tangent to the moving space curve from the point
a =(s,u) to the point d (s+hs, u+du) using paths
(A) and (B), shown in Fig. 1. As is clear from Fig. 1 the
rotation angle 4 is given in the two cases by

S) i

I

a = (s, u) b = (s+as, u)

r(s, u)hs+ rp(s+As, u )du,

42 = rp(s, u)Au+ T'(s, u+Au)ks .

The phase difference b@=4|—42 is

(4)

t) tp
8@

t)s
WsWu+O(a')

u

F(s,u)dshu+O(A ), (4a)

where F(s,u) =Brp/Bs —Br/'rlu can be thought of as a
measure of "anholonomy density" of the system. Thus
the total "anholonomy" as the system evolves in time
from u Ti to u T2 and in space from, e.g. , s —~ to
S +1S

and

N=(n+ib)exp i„ds'(r —cp)

q =x'exp i ds'(r —cp)

hoo h7~
ds T duF(s, u)

h
~ S ~+oo

„T rp(s, u)du,
ra + oo M Tp

T'(s, u )ds „~T, .i4 —oo

In what follows we find N as a function of x and i for a
moving space curve. To find io we require t„and t„„.
These are determined using a procedure suggested by
Lamb.

The Frenet-Serret Eqs. (1) combine to give

(n+ ib), + ir(n+ ib) = —xt .

We assume that r(s, u) cp (const), for ls l
. In-

troducing the quantities

FIG. 1. (a) The route a b d: The phase is

r(s, u)M+ rp(s+ds, u+Au)LLu. (b) The route a c~ d:
The phase is p2 rp(s, u)it u+ r(s, u+hu)hs.

we find that N, —icpN —qt and also t, = —,
'

(q N
+q N ), which determines the spatial (s) dependence of
the natural triad. The temporal (u) dependence is given

by

N„aN+PN*+ yt iRN+ yt,
t„=)N+ pN*+ vt —

2 (y*N+ yN*),
where we have used the constraints N N =2, N. t

N*. t N N 0, together with the compatibility con-
dition t,„ t„,. Using N,„N„, yields q„—y, +i(cpy
—Rq) 0 with R, —,'i(yq* —

y q). The above equa-
tion for q can support soliton solutions for particular
choices of y (expressed in terms of q and its derivatives)
determined by the time evolution of the spaced curve.
On the other hand, using the fact that t„ t =0 we can
~rite t„=gn+hb, where g and h are functions of s and
u. This allows us to express Frenet-Serret-like equations
for the temporal curve,

t„=gn+hb,

b„=n R —
J d r„s—ht,

S

n„=b ds'r„—R -gt.
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The curvature and torsion of this curve are given by

tu. t =g +"
t (t„xt„„)

70
tu' tu

f+ S

ds T„R+4-- 8u

where f=tan '(h/g).
Now, we are ready to calculate the total phase 4 from

Eq. (S). We obtain the following expression:

9 T2 9 +oo
duJ Ti J —oo

+ tan
h

ds xh

—tan
u ~T2

s +

s

Using t, =~n and Eq. (6), we find that t (t, &t„) xh
so that

++ oo

t (t, xt„)dsdu+fp, (8)

with fp an integration constant. For appropriate bound-

ary conditions, such that t tp (a constant vector) at
space-time infinity, the first part of (8) becomes the Pon-
tryagin index and fp =O. Note that R, xh,
= —fdu R, and R —

2 N N„. This shows that by re-

placing the complex unit vector N/J2 by a normalized
quantum state

~
N(u)) and specializing to cyclic evolu-

tion, we make a correspondence with Aharanov and
Anandan's expression" P i f(N ~

a/au
~
N&du for

Berry's phase. However, our expression is applicable to
general evolutions. '

Let us now determine the corresponding gauge poten
tial related to the phase 4. Consider the following con-
struction. We transport, by Euclidean parallel transport,
all the tangent vectors to our "spatial" and "temporal"
curves to the center of a unit sphere. The tips of the
tangent vectors trace out the spherical images of these
space curves on the unit sphere. Now, consider a small

plaquette abed on the surface of the unit sphere, where
the point a corresponds to the point (s, u) of Fig. 1, b to
(s+ds, u), c to (s, u+hu), and d to ( +sd , s+uhu)
We note that the vector dt is tangent to the spherical im-

ages of the space curves. We consider now the following
expressions for the phase difference b@ in terms of the

gauge potential:

b& (~A dt

b@=(~A.dt = d
A

Bt
ds 8u

A. hshu
d tit

du s
j

= (curltA). (t, x t„)hshu . (9)

=A;(s, u) hs+A;(s+hs, u) Lku
s u

rit;—A;(s+hs, u+hu) hs A;(s, u+Au) — Au,
S 8u

where A =A(t) is the vector potential and f is the
closed integral over the plaquette abed. Keeping only
terms up to second order in hs and h, u,

Thus, if VtxA=t, we recover our previous expression
(8) for the phase @. This identifies A =A(t) as the vec-
tor potential of a unit monopole at the center of the unit
sphere. A comparison of Eqs. (9) and (4a) leads to
A. t„=rp and A t, =r. Using Eqs. (ia) and (6) in

these relations gives
r

A = —n+ —ro — b.1 gr (IO)
k h k

b@ A d,sou .
d Bt
$ u

(i2)

Our discussion [Eqs. (4a)-(8)j leading to the total phase
4 shows that the above "partial" phase alone cannot be
associated with the topological term appearing in Eq.
(8).

We now consider a particular application of the above
general formalism: the one-dimensional antiferromag-
netic Heisenberg spin chain.

The continuum approximation in the case of an anti-
ferromagnet is valid only within each sublattice. Intro-
ducing the variables tI; (I/2S) (S;—S;+1) and Z;

(I/2S)(S;+S;+i), where S; is the spin vector at the
site i, and specializing to the physically interesting case
with ~Z[ && ~tI), we find the following equation of
motion:

gu gxxg. (i 3)

Details of this derivation will be published elsewhere.
Since tI tI„O we also have

gx gx gu (i4)

Equations (13) and (14) may be written compactly as

8prt =ep„e~pyrt B~rt (IS)

These equations support several classes of solution, in-

cluding metastable instantons in each homotopic class, '

and can be derived by minimizing the following Hamil-
tonian:

2

877 + |i@
Bt tix

dxdt .

We identify this as the Hamiltonian for the antiferro-
magnetic chain. Associating g with the tangent to a

Let us now consider a particular time evolution of our

space curve: such that after a time interval hu the curve
almost returns to its original configuration. In that case
the points a and c and b and d (Fig. I) will be very close.
Also the paths a b and d c almost coincide, so that
the main contribution to the phase arises from the almost
closed loops a c a and b d b:

ti rp
b@=tp($+hs, u)hu 'rp(s, u)lou ksku . (11)

s
In terms of the vector potential this phase is
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space curve, we may write

g„=g, x g =xnxt = —Kb.

Comparing expression (17) with the general one above,
t„=gn+hb, we identify g=0 and h = —K. In this case
the geometrical phase (S) becomes

t (t, x t„)ds du = tc ds du .

and using the equations of motion for a continuous
Heisenberg antiferromagnet with appropriate boundary
conditions, we have shown that its geometric phase is the
Pontryagin index, which is in agreement with the fact
that this system has instanton solutions in 1+1 dimen-
sions. Possible extensions of our formalism to 2+1 di-
mensions are under investigation.

This is the expression for the phase of a continuous anti-

ferromagnetic Heisenberg spin chain suggested in Ref. 9.
An attempt to justify it was reported in Ref. 10. These
approaches are based on a particular time evolution of
the spin configuration: such that after a time interval Au

the system returns to its original configuration. For that
case only the total phase 4 can be constructed from "lo-
cal Berry phases" for the individual spins, Eq. (11).
Namely,

rods du = ds to dt's4" ds 4 ds4

where f rpdu is the Berry phase for the individual spin at
the point s.

In conclusion, we have shown, for the time evolution of
a space curve, how the local anholonomy density related
to the rotation of the natural Frenet-Serret frame around

the tangent leads to a global topological invariant of the

system (the Pontryagin index). The relation of this

quantity to the Berry phase has been elucidated: The to-
tal geometric phase of an isolated composite system (i.e.,
with no external parameters) is not simply the sum of
Berry phases of the composite parts of the system. Rath-
er it is the sum over relative phases of neighboring com-

ponents in a moving frame. In some limits this becomes
a sum over local Berry phases. The more general situa-
tion is an important feature which must be properly
treated in discussion of phases in interacting many-body

systems like the Heisenberg chain. Thus, for example,
the geometric phase of an instanton, which is a solution

that returns to its original configuration, appears to be its

Pontryagin index (i.e., is quantized). Applying the gen-
eral formalism for the time evolution of a space curve
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