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Haldane Gap in Three Dimensions: A Rigorous Example
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A quasi-one-dimensional S= 1 antiferromagnet with XXZ-type intrachain couplings and Ising-type in-
terchain couplings is studied. It has been suggested that, when the interchain couplings are sufficiently
small, such a system has no long-range order even at T=O because of strong quantum fluctuations
caused by the Haldane gap. Treating the problem in a restricted Hilbert space which describes the low-

energy behavior of S l antiferromagnets rather accurately, we prove two theorems which establish the
existence of a unique disordered ground state with a gap.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.50.Ee

Haldane made a fascinating prediction that, in a
spin-S Heisenberg antiferromagnetic chain, the ground
state is massive and accompanied by a finite energy gap
when S is an integer, while the ground state is massless
and there is no gap when S is a half odd integer. Hal-
dane made use of a field-theoretic argument based on the
large-S limit, so initially it was not clear whether the
conclusion applied to small values of S such as S-1. By
now there have appeared numerical, experimental,
and rigorous works ' which support the prediction even

for S=1.
All of the systems used in the experimental works to

observe the Haldane gap have been the quasi-one-di-
mensional (1D) systems which are collections of chains
forming three-dimensional (3D) lattices. Since they
have strong intrachain couplings and small interchain
couplings, they are expected to behave as 1D systems at
temperatures not too low. But as the temperature is

lowered, it is usually expected that the 3D nature eventu-

ally dominates the system and long-range Neel order
takes place. This is the case in the good S= 1 quasi-1D
antiferromagnet CsNiC13 which Neel orders at Tiv =4.9
K, and in which the indications of the Haldane gap are
observed above T~.

In Ni(C2HsN2)2NO2(C104) (abbreviated NENP)
which is also a good S= 1 quasi-1D antiferromagnet,
however, no Neel order has been observed down to 1.2
K. Contrary to the general belief in the "universality, "
it was suggested that the system does not order even at
T=O. Prior to the experimental result, Kosevich and
Chubukov noted that the ground state of a quasi-1D
S= 1 antiferromagnet may be disordered when the inter-
chain couplings are sufficiently small. However, their
reasoning is a naive perturbative argument which, in my
opinion, is not reliable. Aneck's elegant (but approxi-
mate) field-theoretic analysis in the S ~ limit, and
Sakai and Takahashi's interchain mean-field theory
lead to similar conclusions.

It is well known that a finite system with a unique
ground state and a gap is generally stable under a small
perturbation. One might then imagine that small inter-
chain couplings in a quasi-1D S=1 antiferromagnet may

be regarded as irrelevant perturbations since the unper-
turbed 1D system has a gap. This is essentially the argu-
ment made by Kosevich and Chubukov. But we stress
that the present problem is much more subtle and

deeper. First of all one should realize that the perturba-
tions in this case are applied over the infinitely large 1D
system. The total perturbation energy is always infinite,
and there is no simple reason for the finite Haldane gap
to survive the perturbation. Indeed, perturbations with

certain long-range coherence (like the staggered magnet-
ic field) alter the long-range behavior of the system quite
drastically, no matter how small their magnitude is.
Moreover, one has to note that a quasi-1D system can
also be regarded as a collection of infinitely many 2D
spin systems interacting through strong interlayer cou-
plings. Since each 2D layer itself has the ability to ex-
hibit long-range order, there is no guarantee that they do
not cause some nonlocal or nonperturbative effects. ' To
settle the problem, we need an essentially nonperturba-
tive analysis which can deal with the competition be-
tween the quantum fluctuations caused by the Haldane
effect and Neel order favored by the 2D subsystems.

From a theoretical point of view, the possibility of 3D
antiferromagnets with disordered ground states has al-

ready been established rigorously. AfHeck, Kennedy,
Lieb, and the present author " constructed a class of
valence-bond-solid Hamiltonians in three and more di-

mensions which have disordered ground states. The
similar possibility in experimentally realizable quasi-1D
systems is extremely interesting.

In the present Letter we study a model of the quasi-
1D S=1 antiferromagnet, which has the XXZ-type in-

trachain couplings and Ising-type interchain couplings.
We study the model in a restricted Hilbert space 'Po

which consists only of the spin-0 defects. ' We prove
two theorems which establish the existence of a disor-
dered ground state for the restricted model in a certain
region of the parameters. Details of the proof, along
with a heuristic explanation of the Haldane gap in terms
of the dynamics of the spin-0 defects, will appear else-
where

Consider a three-dimensional cubic lattice whose site
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is denoted as (i,a), where an integer i is the intrachain
coordinate and a point a in the square lattice labels a
chain. With each site we associate an S=l quantum
spin, and denote by S;„Sf„andS;, the corresponding
Pauli matrices. Our Hamiltonian is

H=H, +H, . (la)

The intrachain Hamiltonian H, is

H = g Si,aSr"+i, a '+ S&,aSi+ ],~
i, a

+AS;,S,'+1,+D(S;,) (lb)

and the interchain coupling is

H, =e g S;,S'p,
i, (,a, P)

(1c)

o. . .ohio. . .0 to. . .0 j0. . .0 to. . .ohio. . .o. . .

in each chain. We have represented the state in the stan-
dard S' eigenstate basis. Here 0. . .0 denotes a sequence
of any number (including none) of the S'=0 state, and

the up and down spins must appear alternately. (A typi-
cal basis state looks like i toi tooi t i toi. ) It is obvious

that the model restricted to /fo is equivalent to the origi-
nal model in the Ising limit 6 ~, but in Ref. 12 it was

found that the restricted model has properties remark-

ably similar to the original model even when 6 is close to
unity. In particular, the restricted model exhibits all the
phenomena related to the Haldane gap. It is quite likely

that the dynamics of the spin-0 defects provides a quali-

tatively correct description of the Haldane gap and the
related phenomena. (This is the S= I version of
Haldane's picture based on the soliton dynamics. ') As is

implicit in the following Theorem I, the restricted model

fails to exhibit the XY phase which may exist in the
unrestricted model when 6 is small.

Our first theorem establishes the existence of the Hal-
dane phase and the Neel phase, and hence the existence
of a transition between the two phases.

Theorem J.—In the space )Vo, the ground state of the
quasi-1D Hamiltonain H has Neel order when h, —D

where (a,P) denotes nearest-neighbor sites in the square
lattice. The anisotropy parameters d, and D and the in-

terchain coupling e are measured in the unit of the intra-
chain coupling. We require 5) 0, 6» D, and e) 0.
The extensions of the results to a (1+d)-dimensional
model and/or a model with ferromagnetic interchain
couplings (e (0) are straightforward.

Our Hilbert space /fo is constructed by allowing any
configuration of the (classical) lowest-energy excitations
(spin-0 defects) from the classical ground state. To be
precise, Po is generated by basis states which are written
as

) 2, but it is unique, has a finite excitation gap, and ex-
ponentially decaying correlation functions when 3h, —2D
+8e & 2.

The theorem also applies to the purely 1D system,
where one sets e =0. In this case Neel order must be un-
derstood as the order only within the chain.

Like all the rigorous theorems of this sort, the con-
stants in the theorem are not optimal. The next theorem
itself does not distinguish any concrete parameter region.
Instead, it states that a quasi-1D system has a disordered
ground state whenever the corresponding purely ID sys-
tem is disordered and the interchain couplings are
sufficiently small.

Theorem II.—Consider a purely 1D Hamiltonian H,
with some d and D. Suppose that, in the space analo-
gous to /fo, the ground state of H, is unique, has a finite

energy gap Ei, and exponentially decaying correlation
functions with the correlation length m . Then, in the
space /fo, the ground state of the quasi-1D Hamiltonian
H is also unique, has a finite excitation gap, and ex-
ponentially decaying correlation functions, when d, and D
are the same as the 1D case, and e satisfies e(const
xm Ei (m+Ei)

It is crucial that the above theorem applies to a model

arbitrarily close to the critical one, once we know that its

1D counterpart is in the Haldane phase. In this sense

Theorem II is stronger and more important than

Theorem I. Gomez-San tos ' argued that the S= 1 XXZ
chain in the space Po has a disordered ground state for
h, ~ h„where h,,=-1.125 for D=O. If we take this con-

clusion as granted, the above theorem ensures that, in

the same parameter region, the quasi-1D system with

sufficiently small interchain couplings also has a disor-

dered ground state.
We believe that these two theorems provide rather

strong support to the conjecture that there is a quasi-1D
system which does not order even at T=o. It is quite in-

teresting to address the same question experimentally by
investigating the low-temperature behavior of NENP.
Theoretically, an interesting remaining problem would
be to prove a theorem corresponding to Theorem II in

the unrestricted Hilbert space.
In the rest of the Letter we sketch the main ideas used

in the proof. The proof is based on an exact mapping of
the quantum ground state onto an equilibrium state of a
classical ferromagnetic Ising model in four dimensions.
Our mapping makes use of the standard expansion of the
operator e combined with a kind of dual transforma-
tion.

%e first consider H in a finite lattice. ' Note that the
whole lattice can be decomposed into even and odd sub-
lattices. Let the classical ground state i C) be the state
where spins in the even sublattice have S'=1 and spins
in the odd sublattice have S'= l. It can be proved that
the ground state (in a finite volume) has a nonvanish-

ing overlap with iC). We evaluate (Cie i C) by ex-

2067



VOLUME 64, NUMBER 17 PHYSICAL REVIEW LETTERS 23 AFRIL 1990

panding the exponential by the Lie formula as

&cI -'"Ic&=1 &cI g 1—N-;, , 2N 2%

NT

Ic&, (2)

where
H' =g [hS;,S;+1,+D (S .) ] + e g S;,S;p

i,a i, (a, fj&

and S;—, =(S;, S;,)/2. NT is chosen to be an integer. We denote by ZT iv the quantity inside the limit of (2). We
rewrite ZT, N as

NT —2

ZT, /Y

or(r 1,2, . . . , NT —1)
&cI oN I 1& II &~, I ox I ~,+i&&~NT 11o/v—I c&,

where Oz is the operator inside the square brackets in

(2), and each I o,& is summed over all the basis states of
Po. As usual, ' the above expression of ZT iv can be re-
garded as the partition function of a classical spin sys-
tem. Here we further make use of the special characters
of the space /fo to construct an Ising model on a dual
lattice.

Since each basis state of Po can be fully determined

by specifying the positions of the S'=0 spins (and the
boundary conditions), one can regard a collection
(al, . . . , a~r —1) as describing a space-time config-
uration of the zero spins in 1+2+1 dimensions. Here r
is interpreted as the (imaginary) time coordinate. Fig-
ure 1 shows the (1+1)-dimensional section of a typical
space-time configuration, where the horizontal and the
vertical axes correspond to the intrachain coordinate i
and the temporal coordinate r, respectively. Note that
the zeros can propagate, and be created and annihilated

in pairs, within this (1+1)-dimensional subspace-time.
Now we want to identify the trajectories (i.e., the lines

in Fig. 1) formed by zeros with Peierls contours (i.e.,
boundaries separating up spins and down spins) of a fer-
romagnetic Ising model on a dual lattice. We consider
the dual lattice f(k, a, r)J, where a and r are unchanged,
and the intrachain coordinate is k which lies in the mid-
dle of i and i+1. We find that there is a one-to-one
correspondence between the space-time configurations of
zeros and the Peierls contours (within subspace-time
with fixed a) of an Ising model on the dual lattice with

positive boundary conditions. Moreover, when we take
the following ferromagnetic Hamiltonian, we see that the
quantum-mechanical weight associated with each con-
figuration of zeros and the statistical-mechanical weight
associated with the corresponding set of Peierls contours
also coincide exactly:

lnN +~ D
H Ising, N W &k, a, r&k, a, r+ I + &k, a, r&k+ l, a, r+ &k, a, r&k+ 2, a, r

k, a, r

+ & (ok, a, z+ ok+ i, a, r)(&kpr+ ~rk+ ,I,p, , r) ~

k, (, ,P), 4N
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FIG. 1. The (1+1)-dimensional section of a typical space-
time configuration of zero spins. We identify the trajectories
formed by the zeros with Peierls contours in an Ising model on
the dual lattice.

Thus we have that ZT ~ =Trfexp( —Ht„„s~)l.
We also find the correspondences between the spin

variables S~ =+' (o~ —ig+a~iiiq)/2, where p =(k, a, r)
is a site in the dual lattice and the sign takes a plus or
minus depending on whether p is in the even or odd sub-
lattice. p ~ —,

' are abbreviations of the sites (k ~ —,', a, r)
in the original lattice. It is essential in the present ap-
proach that the quantum spin state is expressed by a lo-
cal combination of the Ising spins.

Then it follows that any local operator A on Po can be
expressed in terms of a local combination of the Ising
spins, and the ground-state expectation value of A is ex-
pressed as a statistical-mechanical expectation value of
the Ising model. Then we can make use of sophisticated
techniques of modern rigorous statistical mechanics to
prove the desired theorems.

In a general ferromagnetic Ising model, Fisher '

proved the following self-avoiding-walk bound

M —
1

&o'po'q& ( g + tanh(Jp, p,„),
mp —qi 0
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co(A) lim lim
L~ DOT~ 00

&C i
»»Ae »-tz

i
C)-

&ci -'"ic&
is the ground-state correlation function in the infinite-
volume limit. dist(A, B) is the distance between the
domains of the operators A and 8. The constants Ci, C2
depend only on the operators A, B. (o gives the upper
bound for the correlation length, and Eo the lower bound
for the excitation gap.

The first part of Theorem I is easier. First, by the
Griffiths inequality, we bound from below the desired or-
der parameter by that of an Ising model on the square
lattice whose horizontal and vertical nearest-neighbor in-

teractions are JH =(6—D)/N and Ji =lnN/2, respec-
tively. Then we get the desired result from the exact
solution of the 2D Ising model.

In Theorem II, it is assumed that the above bounds
(3a) and (3b) hold for the model with e =0. We want to
prove that after adding small e, the bounds (3a) and
(3b) remain valid with slightly modified decay rates.
This is quite a delicate problem because we have to
rigorously rule out the possibility of a first-order transi-
tion and, even more difficult, again have to get the esti-
mates which survive the N ~ (and the infinite-
volume) limits. The corresponding problem (without the
N ~ difficulty) in the classical spin systems was first
solved by Simon' who made use of a correlation in-

equality known as the Simon-Lieb inequality. ' Even in

the present case, by extending Simon's method carefully,
we get the bounds uniform in N.

where the summation is taken over all the walks ni = tpn,

pl, . . . ,p~] with pa =p, pst =q which pass through each
bond at most once. We use this bound to prove the
second half of Theorem I. In our case p, q, . . . are sites
in the four-dimensional space-time (dual) lattice, and
the interaction J~q is determined from the Ising Hamil-
tonian Ht„„g z. When the interactions J~q are suf-
ficiently small, the right-hand side of the Fisher bound
becomes a convergent sum, and we get exponentially de-
caying upper bounds for the correlation functions. To
prove a meaningful result in the quantum system, howev-

er, these bounds and the exponential decay rates must
survive the limit N eo. This is not easy because the
interaction in the temporal direction grows as lnN.
Again following Fisher, we make full use of the self-
avoiding nature of c0 and the fact that the couplings in

space directions decrease as I/N to get bounds uniform
in N. They lead to the following bounds for the quan-
tum-mechanical correlation functions which hold for ar-
bitrary local operators A and 8:

i ni(AB) r0(A—)ro(8) i
~ Ci exp[ —dist(A, B)/gn], (3a)

i ro(e Ae 8) —ro(A)co(8) i
(C2exp( —tEn) . (3b)
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