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One-Dimensional Hopping Dil'usion in a Coherent Phonon Field
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A model of hopping diffusion, with tunneling as the hopping mechanism, is studied. In the presence of
phonons, the size of the barrier, and hence the hopping rate, is time dependent. A closed expression for
the diffusion coe5cient in the single-phonon case is obtained. It is found that for systems with low con-

ductivity, a properly chosen phonon can increase the conductivity by a large factor. Such a phonon can

be forced upon the system externally. The analytical results are supplemented by numerical calcula-

tions.
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Phonon-assisted hopping conduction has been dis-

cussed by many authors. ' In all investigations we are
aware of, the dynamical role of the phonons is either to
change the effective mass of the hopping electron or to
supply it with sufficient energy needed to hop. In this

paper we address another facet of the problem of
phonon-assisted hopping: The phonon is considered as a
coherent time-dependent lattice distortion, whose role is
to change the effective potential barrier for hopping.
Under suitable conditions, a classical picture of a time-
dependent lattice distortion can be justified, and the elec-
tron dynamics can be analyzed using a master equation.

We consider hopping diffusion on a one-dimensional
lattice, with lattice constant a, of sites separated by ener-

gy barriers of typical height E. The tunneling process is
assumed to occur only between nearest-neighbor sites,
and the hopping probability between sites i,j per unit
time at time t is modeled by p; I(t) (v/2)
xexp[ —

A,d; i(t)], where v is a typical attempt frequency
(possibly containing a thermal factor, which is space uni-

form), d; I(t) is the distance at time t between the sites,
and A, 2(2mE)'1/I'i is the inverse effective tunneling

length (m is the electron mass). When the lattice is stat-
ic, the diff'usion coefficient D is simply D -a v

xexp( —
lt, a)=Doexp( —

A,a), and there is no net drift.
Now, we introduce a single acoustic phonon of wave vec-
tor k, amplitude A, and phase p, so that the position of
site j deviates from its equilibrium position by h,, =2
xcos(k[ja —ct]+p), where c is the sound velocity and t
is the time. The distance between neighboring sites at
time t is

r

dpi)(t) =a —2Asin sin k[ja ct]+p+'—ka ka

Defining p —= 2A.A sin(ka/2), the master equation
describing the time evolution of Pi(t), the occupation

probability of site j at time t, reads

d vp (t) e
—la epsin(kiia c()+e+aka/2—)

dt ' 2 .-+)'
(2)x [P,+ (t) —P, (t)l .

A condition for Eq. (2) to be valid is that the time re-
quired for the tunneling process to occur be short corn-
pared with the time in which d(t) changes significantly.
The tunneling time can be estimated roughly from the
uncertainty principle as t, ' =2E/h k~h/4m. The
phonon frequency is given by t~

' ck. The requirement
t, « t~ is satisfied if 4mck&& hi, . The above condition
can be modified by introducing the result of Ref. 2 for
the value of the tunneling time, calculated for a time-
dependent potential barrier. In our notation the result of
Ref. 2 reads t, =2ma/Xh. Consequently, t, « t~ means
(Xa/2)4mck «hA, . Typical values of A, a are obviously
not much larger than 0(l ) and thus the naive considera-
tion presented before leads to a sensible result. Using
typical values for c, we find that even when k and A, are
of the same order, the condition is satisfied. We note
further that as A, increases, the above requirement is
easier to satisfy. It follows that when the above condi-
tion holds, the distance between sites can be justifiably
assumed to be constant during the tunneling event. We
may thus use the static tunneling probability in the mas-
ter equation.

The use of the master equation here should, in princi-
ple, be justified. Attempts to do so are well known.
Here we mention that a physically based condition would
be a long enough residence time of an electron at a site,
during which phase information is lost. This condition
holds whee the hopping rate is low, i.e., in a strongly in-
sulating system, which is the case assumed below. No-
tice that the dephasing process is due to interactions with
the phonon bath. The coherent phonon considered in
this paper is an externally applied one, and is "indepen-
dent" of the thermal ("internal" ) phonon gas.
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In order to solve the master equation, Eq. (2), we first expand the exponent appearing in it to all orders in p, obtain-
ing

oo

P(t) =—e " g g sin" k[ja ct—l+li)+ [Pji (t) P—(t)],
2 (y +]n 0 n ~ 2

(3)

and then express sin(x) as (e"—e '")/2i and use the binomial expansion to get
' nOO n

p (t)
—Aa g g it g ( 1)I i(k(ja ct—l+p+akaj2)(n —2l)[p (t) p (t)]~) n~ 0 2l n I~p, i,

Now, we can perform a Fourier transform in space: P(e, t) =pj- exp( —iej )Pj(t). The resulting equation is
' n

"P(e,t)- 'e "-g
dt

'
2 ~-~] n-0 2i n!

(4)

n

( 1)lei( —kcl+0+aka/2)(n —2l)( ia(8 ka[n ——2I]) 1)p(8 k [ 2i] I)
I 0,

Performing the summation over (r one obtains
' n

(s)

P(e, t) - —2ve
j n 0 n!

n
( —1)'e' "+~)(" ' sin —sin —— [n —21] P(8 —ka[n —21],t) . (6)

Finally, we Laplace transform in time, P(e,s) =fp dt exp( st)P—( et), with the initial condition Pj(0) =hj p, to get
the equation for P(e,s):

sp(e, s) —
1 = —2ve

n 0

' n n

( I ) leis(n
—2I)

n((0 I

xsin —sin —— [n —2ll P(8 ka[n ——2l],s+ikc[n —2i]) .
8 . 8 ka
2 2 2

(7)

In order to proceed, we assume that the solution is analytic in tt, so it can be expanded as

p(e, s) = g tt p (e,s).
m 0

Inserting the expansion (8) into Eq. (7) and equating equal powers of p, we obtain the recursion relations

A l
Pp(e, s) =

s —v(cose —1)e

(8)

I~ ' n

P (e,s) = —2ve ' g — g ( —1) e"" sin —sin —— [n —2l)),a I -I " "
I .(.-2() .

2i n( I-p, i, 2 2 2

P „(8—ka[n —2l],-s+ikc[n —2l])
X

s —v(cose —1)e

Using the notation n j =gj n i j =gf-(I;, and sn I=——s+ikc[n —2il —v[cos(8 —ka[n —2i)) —l]e ', Eq. (9) can
be iterated repeatedly to obtain a closed expression:

m n

p (es)= g
n, -l l, -o

m n(P —1) np P sill( 2 8)
g ( —2ve ")I' — P, ,

( —1)''e"'
I p 2i I-) lj (nJ !J)1 sp p

in'(-,' 8 ——,
' k [ ' —2l ' ]) i ( —8 ——'k [ —2i ])

(10)
j 1 Sn (J) ((j)

where we sum over all the partitions n[,n2, . . . , np such that n =m.

Sm I(P)
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In order to find the diffusion coefficient D and the drift velocity V we must first compute the average displacement
and average-squared displacement,

(x(t)) =a Q jP, (t) =ia P(8, t)
de

and then use

(x'(t)) =a' g j 'P)(t) = —a', P(8, t)
d0 g=0

(12)

m n m —n'p " np P

Z (-2ye ")'(-) Il
n, 1 ll 0 np I lp 0 )-] I, .an, —l, g'.

p —[ sin ( —, ka[n "—2l ])
,i-i ikc[n J —2l ~ ] —v[cos(ka[n —2I 1 ])—1]e

where m =2!~t'i. Finally, we can perform some algebraic manipulations on Eq. (13) before we use the expansion (8) to
obtain our final result for the diffusion coefficient:

(i3)

V= lim —(x(t)), D= lim —[(x (t)) —(x(t)) ].1 1

It follows that we have to consider in Eq. (10) only terms that grow at least linearly in time at 8 =0. Since each term is
a product of factors of the form I/(s+a, ), there will be such a contribution only from terms with at least two vanishing
aj's, which requires n =21 for some 1 ~ j ~ p. However, if this condition is satisfied for some j & p, the relevant
term is of the form sin (8/2)f(8), and both its first and second derivatives with respect to 8 vanish at 8=0. It is there-
fore necessary that m =21 ~, in which case the term whose contribution is linear in t is of the form sin (8/2) f(8), and
while its first derivative still vanishes at 8=0, the second derivative with respect to 8 at 8=0 is f(0)/2. It follows that
there is no net drift in the system. As for the diffusion, we note that the only contribution which grows linearly in time
has a factor t arising from the terms proportional to I/s, and each other factor of I/(s+a~) contributes a factor 1/a,
to D. The conclusion is that the contribution of order p,D, to the diffusion coefficient, as obtained from P, is

D =Doe "g AA sin
ka

m 0 2

2m 2m n
1

n, ] l
1

0 t, -o ~-i I, !(nj —Ij)!

p —] —4sin'(-, ' ka[n"' —2l"'])
j 1 k c [n 2I ] y e ~a+4sjn (2 ka[n ~ 2I ])

(i4)

large (or ka is not very small), the mean-field result does
not hold, and we should use Eq. (15), which indeed de-
scribes the numerical results with high accuracy.

Since Io increases exponentially as a function of its ar-
gument, when the latter is at least O(1), it follows that
when Xa»1 (strongly insulating system) the phonon
strongly increases the diffusion coefficient:

The amplitude A is limited by the requirement that
neighboring atoms do not cross each other: A/a( 1/2

~
sin(ka/2) ~. In the extreme case, when the latter

relation is an equality, the resulting diffusion is similar to
what is obtained for Xa =0 (i.e., a conductor). However,
such a case can only be approached but not obtained in

practice. It is seen therefore that in systems which are

with I t' m.
Using the notation f~= —4sin (jka—/2)/[4sin (jka/2)+ j k c y e '], the expansion of D to the first three orders

inp is

D=-Doe '[I+(I+2f~)[XA sin(ka/2)] + & (I+8fi+2f2+8fi f2+12f(+8f(fq)[AA sin(ka/2)] j. (15)
Equation (14) is an exact closed expression for the

diffusion constant D. It is, however, a rather complicat-
ed one, and so we consider some limiting cases in which
it can be simplified. When A,a is large, or ka is small, all
the f, 's are negligible, and for every m in the summation,
only the term with p=l contributes significantly. The
sum in Eq. (14), with p= 1 terms only, can be identified
as that which defines the modified Bessel function. We
therefore have that for small wave vectors, or for strong- r

ly insulating systems,
~ ~

D~D0exp —ka 1
— sin

2A . ka

D =Doe 'Io(2XA sin(ka/2) ), (i6)
where I0 is the modified Bessel function of the first kind.
It is interesting to note that Eq. (16) could have been ob-
tained from a mean-field calculation. It follows from the
value of p;~ that (p;~), defined as the time average of
p;1(t) over a period of the phonon, yields an effective
(time-independent) hopping rate that corresponds to the
diffusion constant obtained in Eq. (16). When ka is not
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very bad conductors, the diffusion can be significantly
enhanced by exciting mechanically an appropriate pho-
non. We reiterate that as A, increases the use of the mas-

ter equation is better justified.
It is also important to note that when the phonon is

excited mechanically in a real system, it is possible to
force it to be along some lattice axis. In that case, the
one-dimensional analysis applies to the conductivity
measured along that axis, even when the system is three
dimensional.

We bear in mind that in deriving the expression (14)
for the diffusion coefficient we had to make one assump-
tion, namely, that P is an analytic function of p. To
check the validity of that assumption we compared the
prediction of Eq. (14) with the result obtained by nu-

merical integration of the master equation (2). It turns
out that it is very difficult to integrate Eq. (2) over long

enough times and still achieve the accuracy required to
verify Eq. (14). To solve this problem, we developed a
method that enables us to compute numerically the
diff'usion coefficient to very high precision, and with rela-
tively small computation time.

The method applies when ka is a rational fraction of
2tr. If ka =(m/n)2tr, with m, n integers, Eq. (2) can be
separated into a system of n equations:

—xa %' p sin (k [la ct1 + e—+ akal 2)

dt 2 cr +1
~P.&+t+.«) P.t+t (t) 1—,

(I g)

for 1=1,2, . . . , n The coeffi. cients in the system (18) do
not depend on j; therefore if we define an "n-step"
Fourier transform in space, P '

(O, t) =g~t:+ exp( —i8
x [nj +I])P,t+t (t), we obtain the system of equations

d p(l)(e )
v —t,g

t
' 2'

p sin(k [la ct1 +y—+ aka/2)

a~+ I

x le' P +
(H, t) —P (H, t)], (19)

where l is defined mod(n). The system of equations (19)
has two advantages: It is a finite, small (when n is

small) system, and the coefficients are periodic in time.
It therefore suffices to integrate a small number of equa-
tions over a finite range of time (one period) in order to
obtain the behavior of the system at arbitrarily large
time using Floquet's theorem. One has to integrate Eqs.
(19) with n initial conditions that form a basis, and thus
obtain the matrix that transforms the state of the system
to its state after one period of the phonon oscillation has
elapsed. The long-time behavior of the system is deter-
mined by the leading eigenvalue of that matrix. This
procedure is repeated for several values of 0 near 0=0
and from these results one can evaluate the derivatives at
0=0

We remark that the straightforward integration of Eq.
(2) indicates that D is a continuous function of k; there-

0 40 —' ' '

I

' ' ' '

I
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fore the restriction to rational fractions is not limiting
the validity of the results. The computation was carried
out for many values of the parameters, the results always
being in full agreement with the analytic calculation.

Typical results are given in Fig. 1. The diffusion
coefficient D (measured in units of Do) is plotted versus
ka/2tr over the entire zone. In Fig. 1(a) we plot several
values of ka, while A/a is kept fixed (=0.25). As li,a is
increased, the magnitude of D decreases, but its sensitivi-

ty to ka increases. In Fig. 1(b) ka is kept equal to 1.5,
while A/a is varied. Again the sensitivity to ka in-

creases with A. In both cases the numerical and analyti-
cal results are indistinguishable.
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FIG. 1. The diA'usion coellicient D/Do as a function of ka.
(a) 4A =a. The values of la are 1.00, 1.25, . . . , 2.00 and are
indicated on the plot. (h) ka 1.5. The values of A/a are
0.1,0.2, . . . , 0.5, and are indicated on the plot. See text for
definitions of the parameters.
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