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Nonlinear Theory of Intense Laser-Plasma Interactions
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A nonlinear theory of intense laser-plasma interactions is developed and used to describe relativistic

optical guiding, coherent harmonic radiation production, and nonlinear plasma wake-field generation.

Relativistic optical guiding is found to be inefl'ective in preventing the leading portion ( a plasma

wavelength) of a laser pulse from diffracting. Coherent harmonic generation is found to be most

efficient for short laser pulses. Optical guiding and harmonic generation may be enhanced by the pres-

ence of large-amplitude plasma wake fields. These phenomena may be important in laser-driven plasma

accelerators, x-ray sources, and fusion schemes.
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The interaction of ultrahigh-power laser beams' with

plasmas is rich in a variety of wave-particle phenomena.
These phenomena become particularly interesting and
involved when the laser power is sufficiently intense to
cause the electron oscillation (quiver) velocity to become
highly relativistic. Some of the laser-plasma processes
addressed in this Letter include the following: (i) rela-
tivistic optical guiding of the laser beam, (ii) the exci-
tation of coherent radiation at harmonics of the funda-
mental laser frequency, and (iii) the generation of
large-amplitude plasma waves (wake fields). These
processes are relevant to laser-plasma accelerators, x-ray
sources, and laser fusion schemes.

Using a cold-fluid model together with a "quasistatic"
approximation, a set of coupled nonlinear equations is

derived for the vector potential of the radiation field and
the electrostatic potential of the plasma. This fully non-

linear 1D model describes the self-consistent interaction
of intense laser pulses with plasmas. The important issue
of laser-plasma instabilities, however, is not addressed
in this paper.

Relativistic optical guiding results from the mod-

ification of the index of refraction due to the relativistic
quiver motion of the electrons by the laser field.
Analysis of this eff'ect has shown that as the laser power
exceeds a critical threshold, diff'raction can be overcome,
resulting in optical guiding of the laser beam. Previous
analyses of relativistic guiding have included, for the
most part, only the transverse electron motion in the
plasma response current. Relativistic guiding was be-
lieved to occur on a fast time scale (on the order of the
inverse laser frequency). However, the present analysis
finds this not to be the case. By including the electron-
density response and the longitudinal electron motion
self-consistently, it is sho~n that for short laser pulses
(pulse lengths less than a plasma wavelength) relativistic
optical guiding is significantly diminished. It is found
that relativistic guiding occurs only for long pulses with

slow rise times (greater than an inverse plasma frequen-

cy). The leading edge of a long pulse, however, will con-
tinually erode.

As the quiver motion of the electrons in a linearly po-
larized laser field becomes highly relativistic, the plasma
response current will develop harmonic components.
This can lead to the excitation of coherent radiation at
harmonics of the fundamental laser frequency. In addi-
tion, the ponderomotive force of an intense, short-pulse
laser (pulse lengths near the plasma wavelength) can
generate large-amplitude, plasma-wave wake fields.

The 1D fields associated with the laser-plasma interac-
tion can be described by the normalized transverse vector
and scalar potentials, a(z, t) =

~
e

~
A&/moc and

p(z, t) =
~
e

~ @/moc, respectively. The electrons are as-
sumed to obey the relativistic cold-fluid equations and
the ions are assumed to be stationary. Thermal effects
may be neglected provided (i) the electron quiver veloci-

ty is much greater than the electron thermal velocity,
and (ii) the thermal-energy spread is sufficiently small
such that electron trapping in the plasma wave is avoid-
ed. It proves convenient to perform an algebraic trans-
formation from the laboratory-frame-independent space
and time variables (z, t) to the independent variables

((,r), where g z —ct, r=t, and c is the speed of light.
In this coordinate system the plasma flows through a
nearly stationary (slowly varying in r) laser pulse. Us-
ing the Coulomb gauge, V A =0, and noting that
tI/8z =8/8( and 8/8t =8/Br —c a/ag, the wave equation
is then given by

2 8 z8 |la kzn a
c 8( tlr Br n

and Poisson's equation is 8 p/tl( =k~ (n/no —1), where

kt, =4m~ e
~ no/moc, n is the plasma electron density,

and no is the ambient density. The relativistic factor as-
sociated with the electrons is y

= (1 —
p&

—p )
=(1+a )'t l(1 —P)'t, where P~=v&/c and P=v, lc
are the normalized transverse and longitudinal electron

Work of the U. S. Government

Not subject to U. S. copyright 2011



VOLUME 64, NUMBER 17 PHYSICAL REVIEW LETTERS 23 APRIL 1990

fluid velocities, respectively. In obtaining the right-hand
side of Eq. (1), conservation of transverse canonical
momentum has been used, yP& =a, along with the trans-
verse current, J& = —

I e
I
nv &

= —
I e I nca/y. The longi-

tudinal electron fluid response is given by the momentum
equation, d(yp)/dt =chili/Bz —(c/2y)9a /Bz, which in

the g, r variables becomes

[y(1 —P) —y) = —— (yP) .
1

(2)
8( c 8r

Similarly, the continuity equation, Bn/Bt+c 8(nP)/
Bz =0, becomes 8[n(1 —P))/8$ =rl(n/c)/rlz

The electron-fluid response can be greatly simplified

by noting that, in the g, r coordinates, under certain con-
ditions a quasistatic state will exist in the macroscopic
plasma quantities, n, P, and y. That is, if the laser pulse
is sufficiently short, the fields a and p which drive the
plasma are expected to change little during a transit time
of the plasma through the laser pulse. Equation (1) im-

plies that the envelope of a changes on a characteristic
time z, -2yI np/n I (ro/pip)/co&, where ro is the laser fre-
quency. Assuming ro»ro~, the time z, will be long com-
pared to a plasma period. If the laser-pulse duration, rL,
is small compared to z„ then the quasistatic approxima-
tion is valid. In addition, the validity of the 1D model
requires that the laser-beam vacuum diffraction time,

nr, /kc, be long compared to r, . This is satisfied
when the radiation spot size r, »Xp =2m/kp.

Under the quasistatic approximation, the 8/8z deriva-
tives may be neglected in the electron-fluid equations. In
this case, the fluid equations can be integrated to give
n(1 —P) =np and y(1 —P) —&=1. Using these rela-
tions, together with the expression for y, the coupled
field equations become

2 8 q8 Ba ki a
c eg

' a. a. 'I+y' (3)

8'y k' (1+a')
ag' 2 (I+y)'

This coupled set of equations completely describes the
1D nonlinear laser-plasma interaction within the quasi-
static approximation. This model is valid for laser pulses
of arbitrary polarizations and arbitrary intensities

(I a I
) 1). Consistent with the quasistatic assumption,

a number of important points can be made concerning
intense laser-pulse propagation in plasmas.

The nonlinear index of refraction of the laser beam
within the plasma determines, among other things, the
optical-guiding properties of the plasma. For the pur-
pose of the present discussion, the laser field a is as-
sumed to be linearly polarized, a =aL exp(ik(), where aL
represents the complex amplitude and k is the wave

number. The characteristic spatial variation in the laser
envelope, I aL I, is assumed to be of the order of I and is

long compared to the laser wavelength, X=2m/k, i.e.,

8I ai I/tl(= I aL I/L«k IaL I. From the wave equation,
Eq. (3), the refractive index, rl =ck/co, is given by

k'/2X'q=l-
I+p, (5)

where p, is the slow part of the scalar potential and
In obtaining Eq. (5) from the wave equation,

8/8( was replaced with ik and a/ax replaced with
i (ck —ro), where I ck —ro

I
«ck and p=P, . Here it has

been assumed that I iIif I « I p, I, where pf is the rapidly
varying part of p, which is valid as long as A, «X~. The
fact that n/y I/(1+iIi) is predominantly slowly varying,
even though n and y have rapidly varying components, is
also suggested by earlier work.

For a long pulse with a long rise time compared to a
plasma period, L»A, ~, the first term on the left-hand
side of Eq. (4) can be neglected and p, can be approxi-
mated by I+&,=(I+

I aL I2/2) 'i . Although the
present analysis is 1D, one expects that for a slowly vary-
ing transverse laser profile, the index of refraction will

depend on the transverse coordinates through the laser
amplitude I aL I. Since the actual laser-beam amplitude
falls off transversely, ti I aL I /rlr & 0, so will the refractive
index, Bri/8r &0. The negative transverse gradient of
the refractive index can lead to optical guiding. It is well
known that if the refractive index is of the form given by
Eq. (5) in the limit I+&,=(1+ IaL I

/2)'i, a critical
laser power necessary for relativistic optical guiding ex-
ists and is given by P„;i=17(k~/k)' GW.

We next consider a short laser pulse compared to a
plasma period, L+X~. When I&I &&1, Eq. (4) can be
solved for arbitrary L. If the pulse envelope is given by
aL =aLpsin(ng/L) for L~ g (0 a—nd aL =0 otherwise,
the scalar potential within the laser pulse, for L «Xp, is

p, =(aLpkp/4) g(g), where

g(g) =g —2(L/2n) [1 —cos(2ng/L) 1 .

Note that, even for
I aLp I

& 1, the assumption that
iIi, « 1 is valid as long as L «k~. In the short-pulse limit,
the fact that p, «1 implies that the optical-guiding
effect is reduced significantly, by more than the factor
(n /2)(L/1i, ~) &&1. The critical power, therefore, is in-
creased by the inverse of this factor and, in addition, the
degree of guiding varies along the pulse. Hence, it is un-

likely that relativistic optical guiding can be effectively
utilized in short, L (X~, laser pulses.

Although it may appear that a long laser pulse may
undergo guiding, assuming the various laser-plasma in-
stabilities can be controlled, the front of the pulse wi11

diffract. Initially, that portion of the head of a long-
rise-time pulse in which the local power is less than P,„;t
will diffract. Once this portion has diffracted away, the
pulse will exhibit "short-pulse" diffractive behavior; i.e.,
the front region (-X~) will continue to difl'ract. The
erosion of the front of the pulse will propagate back
through the body of the pulse (in the ( frame) at a veloc-
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ity on the order of t. p —cX~/zn, where zn =rrr, /), is the
vacuum Rayleigh length.

The nonlinearities associated with relativistic eAects
can provide a source for the generation of coherent radi-
ation at harmonics of the laser frequency. To examine
this process, the full radiation field is represented by
a =paiexp(ij k(), where the sum is over j=1,2, 3, . . .

and ai =aL(g) is the envelope of the dominant funda-
mental laser pulse, iaLi » Iaj i, for j) 2. It is clear
from the right-hand side of Eq. (3) that harmonic exci-
tation is solely due to the fast part of p. In particular,
since the fundamental component of the radiation field
dominates, the fast part of the scalar potential is driven

by the fast part of a, which is (aL/2)cos(2k(). Equa-
tion (4) may be solved for p/ by replacing tl/8( with 2ik
and by approximating p by p, on the right-hand side.
This gives pf =pf cos(2k(), where

(aj
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Noting that

iaaf

i
« I p, i, the source term in Eq. (3) for

the harmonics is

15

10

(bj
1 hn/n
I'

Il

S=k~aL(1+&, ) 'cos(kg) g [Qcos(2k()], (6)

where Q =(X/4k~) aL (1+&,),and m =0, 1,2, . . . .
As an illustration, consider the excitation of third-

harmonic radiation (3rp). Substituting the third-
harmonic component of the source, (m =1) in Eq. (6),
into the right-hand side of Eq. (3) allows one to solve for
the third-harmonic field, I a3 I. The ratio of the third-
harmonic power to the fundamental laser power is

P3/Pi =R, where R=(k/4A~) (I+&,) aLro„r and r
is the laser-plasma interaction time.

Equation (6) shows that the generation of harmonics
is a strong function of the plasma wake field p, in the re-

gion of the fundamental laser pulse. For a single long-

pulse, large-amplitude laser, Iai i »1, the slow part of
the scalar potential is P, = IaL i/K2. In this case, the
harmonic content of the source term in Eq. (6) is exceed-

ingly small. Taking r to be a diff'raction time, rd
=mr, /Xc and r, )k~, the third-harmonic power becomes
P3/Pi=F, where F=J2nk/4k~ IaL i. In the case of a

short, L «X„, large-amplitude laser pulse, one has p, « I

which gives P3/P i
=G, where G =J2nk i aL i /81~. For

iaq i'» I, a short pulse is more efficient than a long

pulse for harmonic generation.
The nonlinear excitation of plasma wake fields is

governed by Eqs. (3) and (4). Figure 1 shows the
plasma-density variation Sn/np=n/np —1, and the axial
electric field E. for a laser-pulse envelope given by
aL = aLp sin (ng/L ) for L( ((0, where —L =X~ =0.03
cm, X=10 pm, and (a) aLp=0. 5 and (b) aLp=2. For
a~0~ 1, nonlinear eAects become important. In Fig.
1(b) one observes a steepening of the electric field and

an increase in the period of the wake field. ' '' In addi-
tion, Fig. 1(b) shows that the electrostatic potential p is

&
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FIG. 1. Density variation 6'n/np n/np —
1 (dashed line), ax-

ial electric field E in GeV/m (solid lin-e), and electrostatic po-
tential p (dotted line) for a laser pulse located within the re-
gion L~((0, wh—ere L=A~ 0.03 cm and (a) aLp 0.5
and (b) alp=2.

predominantly slowly varying within the laser pulse even

though Bn/np has rapidly varying components.
Aspects of nonlinear wake-field generation may be

examined analytically by solving Eq. (4) for a circularly
polarized laser pulse with a square-pulse profile, aL =alp
for —L ( g (0 and aI 0 otherwise. In particular, one
finds that the optimal pulse length for maximizing the
wake-field amplitude is L,~ =2ypE(p)/k„2ai p/k~ for
aL2p»1, where E(p) is the complete elliptic integral of
the second kind, p =1 —1/yp and yp

= I+al p. This
gives a wake field where yp) 1+&,) 1/yp with a max-
imum axial electric field of E „=yp —1/yp aLp for
asap»1, where E= ie iE./mpc k~ Note tha-t the ma.x-
imum axial electric field is E „. „=aL0 for aL0((1. Also,
the nonlinear wake-field wavelength is Xz~" =4ypE(pp)/
kz 4ai p/k~ for aLp&&1, where pp =1 —1/yp.

The large-amplitude axial electric fields associated
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with the plasma waves can be utilized to accelerate an

injected beam of electrons to high energies. In addi-
tion to accelerating electrons, the plasma wake field can
affect both the primary laser pulse as well as a trailing
laser pulse. For example, in the region where Sn/no & 0,
the transverse profile of the plasma wake field can lead
to a negative transverse gradient of the refractive in-

dex, ' t)tI/t)r & 0. Equation (5) indicates that a proper-
ly phased trailing laser pulse, which is located at a max-
imum in P„may be optically guided. Harmonic genera-
tion can be substantially enhanced in a properly phased
trailing laser pulse propagating in a region of the wake
field where —I (p & 0, as indicated by Eq. (6). In ad-
dition, the sharp axial gradient in Bn/no for a highly non-
linear plasma wake field could induce large frequency
shifts in a laser pulse. '

Based on the ID nonlinear quasistatic model of laser-
plasma interaction, Eqs. (3) and (4) have been used to
analyze (i) relativistic optical guiding, (ii) coherent har-
monic production, and (iii) nonlinear wake-field genera-
tion. Relativistic optical guiding is shown to depend
strongly on the laser-pulse duration. In the long-pulse
regime, optical guiding requires a minimum level of total
laser power, i.e., P„;,. However, the leading portion of
the pulse will experience diffraction. In the short-pulse
regime, relativistic-guiding effects are greatly diminished

by the density response and longitudinal motion of the
electrons. As the electron quiver motion becomes highly
relativistic, the plasma response current develops har-
monics. Analysis of this process has shown that coherent
harmonic generation is more effective for short pulses
than it is for long pulses with slow rise times. The gen-
eration of nonlinear plasma wake fields by intense, short
pulses was also examined. Various applications of the
plasma wake fields may be possible, including (i) the ac-
celeration of a trailing electron bunch (laser wake-field
acceleration), (ii) optical guiding of a trailing laser
pulse, and (iii) enhancing the coherent harmonic radia-
tion generated by a trailing laser pulse.
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