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Fractional Statistics on a Torus
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It is shown that fractional statistics on a torus is consistent only with multicomponent wave functions.
This is expected to be generally true for all 2D closed, multiply connected, orientable manifolds. The
fractional quantum Hall eAect with periodic boundary conditions is seen to fit into this new picture,
where the quasiholes may be interpreted as a kind of generalized anyons.
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There is a possibility of exotic so-called fractional (or
8) statistics in a quantum system of N identical particles
moving on a 2D manifold Af. ' For particles obeying
fractional statistics (anyons), the complex phase change
of the wave function upon interchange of two particles
exp(i8) is given by neither 8=0, as in the Bose case, nor
8=m, as in the case of Fermi statistics. Considering a
plane At =8, there are no restrictions on the statistical
angle 8. On a sphere, At =S, 8 must satisfy 8=ntt/(N
—1), where 0( n ( 2N —3. In the thermodynamic
limit N ~ there is no restriction on 8. Surprisingly,
the situation on a torus, At =7', seems to be different.
Govindarajan and Shankar have found that for solitons
in the O(3) nonlinear o model on a torus, the only al-
lowed scalar statistics are Bose and Fermi. Imbo, Imbo,
and Sudarshan have also suggested that for all closed,
orientable, two-manifolds P,4S, these are the only pos-
sibilities. It then seems that fractional statistics are not
allowed if one imposes periodic boundary conditions
(PBC) on a system of particles moving on a plane. This
appears surprising since we would like to see the thermo-
dynamic limit insensitive to the global topology.

We will show here that the resolution of this apparent
paradox is that on a multiply connected manifold A, ,
scalar statistics does not imply scalar quantum theories.
Hence, fractional statistics may be obtained by using a
multicomponent wave function. It will be shown that
this type of fractional statistics is applicable to the
quasiholes of the fractional quantum Hall eA'ect

(FQHE) with periodic boundary conditions.
The rest of this Letter consists of two parts. The first

part reviews basic facts about quantization and braid

groups while the second part discusses new results about
fractional statistics on a torus.

Basic facts The stan. —dard procedure for constructing
a quantum theory from a classical configuration space Q
is to choose the fixed-time quantum state vectors 4(q) as
functions from Q into the complex numbers C. More
generally, one can choose +(q) to be multivalued and to
have M components f%' (q)). The only restriction is6

that when q is taken along closed loops in Q, fO (q)I
must transform according to a M-dimensional unitary
representation of trl(Q), the fundamental group of Q,
and map back on the same multivalued state vector. The
quantization of a classical system is therefore, in general,
not unique and for every distinct irreducible unitary rep-
resentation (IUR) of tri(g) there is a distinct quantum
theory.

For a system of N indistinguishable hard-core parti-
cles moving on a manifold At, Q=Q~—= (At —h)SJv,
where 6 is the subcomplex of all points in At~ where two
or more particle coordinates coincide, and S~ is the per-
mutation group of N symbols. ' Single-valued state
vectors in (Af—6)/S~ , give only Bose statistics,
whereas multivalued state vectors give Fermi and frac-
tional statistics. The latter correspond to single-valued
state vectors in JK —h„but with an external statistical
gauge field. ' The fundamental group of Q~ is known

as the ¹tring braid group B~(At) of the manifold At.
The quantum theories with one-component state vectors
+(q) are called scalar quantum theories These corre.-

spond to 1D IUR's of B~(At) and give scalar statistics
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where 1(i & j(N. We are always using a notation
where the left-most operator is acting first.

The rather large set of relations that defines 8/v(7')
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FIG. 1. Representative paths defining the generators of
Bw(T). The torus has been opened up and the generators are
defined with respect to an ordered N-tuple of coordinates
{xl, . . . , x~}. (a) The generators {r,} and {p;}, 1(i ~ jV.

Note that the loops pass between the particles {1,. . . , i —1}
and {i+1, . . . , /V} (b) The local particle interch. ange genera-
tors {at},1 ~ k ( jV —l. (c) The paths defining the auxiliary
generators {A;j}and {C„},1 ~i &j ~ jV

where the statistical phases exp(i8) are given by the
characters of the 1D representations.

The ¹tring braid group of the torus 8/v(7 ) is an

infinite non-Abelian group defined as the fundamental

group of (7' j//,
—)/S/V. An element of BN(7. ) may be

thought of as a homotopy class of paths in Y —6 whose

(fixed) initial and final points are related by a permuta-
tion of the particle coordinates.

One set of generators of 8/v (7') is

{r;,p;, rsvp, i='l, . . . , N; k 1, . . . , N lj.—

The generators {r;j and {p;j each take particle i along
one of the fundamental noncontractable loops, depicted
in Fig. 1(a), leaving all other particles fixed. We denote
the subgroup of 8/v(7') generated by {r;j and {p;j by L/V.

This is the so-called unperrnuted braid group, which is

the fundamental group for distinguishable particles. The
generators {ok} are the clockwise interchanges of parti-
cles k and k+ 1 for a configuration with no particles in

the enclosed region [see Fig. 1(b)]. We denote by Ziv

the subgroup of 8/v (7') generated only by {okj.
It is also convenient to introduce auxiliary generators

{A;jj and {Cjj which move particle i around particle j
along the paths in Fig. 1(c). These additional generators
can be shown to be related to the generators {r;j and

{p;j by

may be divided into three categories. The first category
defines the unpermuted braid group L/v

tk~lm ~lm tk~ Pk~lm +lmPk ~

tl tJ tj tl o pl pJ pJ pi

C/j ( / J ) /j (~j /)
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where 1 ~ k & I & nt (N and 1 (i &j(N.
The second category involves only the generators {okj:

erg tr/ = cr/tr/„ I S k ~ N —3, f l —k f
)2,

&k &k+ 1 ak Ok+ 1 ak ok+1, 1 ~ k ~ N —2.

Note that Eq. (9) gives ak =ok~i =—exp(i8) if all {okj
commute, as they do for a 1D IUR. The angle 8 is the
statistical angle.

The third category mixes the generators of L/v and the
generators of Z~.
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—
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where g is a 10 IUR of Z~, 1~ is the M x M unit ma-
trix, denotes tensor multiplication, and =- means
equivalence as representations. In other words, the
statistics (describing local interchange of identical parti-

where 1 ~ i ~ N 1 and 2 (—j(N l. —
For a 1D IUR, it follows from Eqs. (12) and (2) that

exp(2i8) 1 on a torus. Therefore, the scalar theories
give only the ordinary Bose (8 0) and Fermi (8=jr)
statistics. Following Imbo, Imbo, and Sudarshan the
same conclusion may be made for all closed surfaces of
higher genus by Abelianization of their braid-group pre-
sentations.

Generalized fractional statistics. —Even for a system
of N distinguishable free particles there are many dis-
tinct quantum theories corresponding to distinct IUR's
of L/v. This ambiguity has nothing to do with the statis-
tics, which describes the indistinguishability of identical
particles. Therefore, following Ref. 5, we define the
"statistics" provided by rj, an IUR of 8/v(A), as rj/Ziv,
the restriction of rj to Z/V. Two IUR's of 8/v(A), rji and

rjz, we say are statistically equivalent if rji/Xiv and

riz/Ziv are isomorphic. On a multiply connected mani-

fold A, we can then consider M-dimensional IUR's g,
which are statistically equivalent with scalar fractional-
statistics theories,

rjl~iv=rjIM,
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cles) is scalar, whereas the quantum theory (which in-

cludes global paths) is nonscalar and non-Abelian. This
construction is not realizable on simply connected mani-

folds JK, where BJv(At) =Zjv. Hence it is possible to ob-
tain fractional statistics in a new form we call general
ized fractional statistics Th. e particles obeying this type
of statistics are called generalized anyons. The genera-
tors oi now have the form exp(i8) l~, whereas [r;} and

[p;} are general unitary M x M matrices. The interpreta-
tion of such a representation is that the generators [oi}
act on M-component state vectors by multiplying all

components by the same phase, exp(i8), whereas [r;}
and [p;j mix the components. We may now ask which

statistical angles 8 are compatible with the complete set
of rules determining the braid group.

Relations (10)-(12) give simple relations among [r;}
and among [p;}:

=7 e p' =p'e

and together with Eq. (2) we have

A =C e'=A
IJ iJ

(14)

(IS)

This last equation is one of the conditions that deter-
mines the allowed values of 8. The other condition is a

consequence of Eqs. (12), (15), (2), and (14). These

imply that [r;} and [pj} must obey the commutation re-

lation

Tp =p fe

By taking the determinant of both sides we immediately
see that 8 is restricted by

exp(2Mi8) =1. (18)

Therefore, all possible statistical angles 8 are given by

8 = (tt/G )n, 0 ~ n ~ 2G —1,

where G is the greatest common divisor of M and N
[G =GCD(M, N)]. By using the braid-group presenta-
tions given in Ref. 9 one may see that for an orientable
surface of genus g & 1 the restriction on 0 generally de-

pends on both M, N, and g.
We may now try to find the most general form of rl

and p~ satisfying Eq. (17). All other generators [r;} and

[p;} are then determined through Eq. (14). Without loss

of generality, rl may be chosen to be a diagonal matrix,
r~ =diag(z~, . . . , z~). By explicit calculation it is then

possible to show that all diagonal elements of pl must be
zero and that the eigenvalues of rl must fulfill the condi-
tion z;

=czar,

where P 6 5~ is a permutation P:
(1, . . . , M) (P~, . . . , PM), and c=exp(2i8). There
are two cases.

Finally, relations (3)-(8) together with Eq. (15) give

only one more equation,

1 =A =exp(2Ni8) .

(1) If c has no shorter period than M, i.e., c Al if
1 ~ m ~ M, then all [z;j must be different and p~ must
be a monomial matrix (a matrix with exactly one entry
in each row and each column) corresponding to the per-
mutation P with cycle length M. Since all permutations
with the same cycle structure belong to the same conju-
gacy class, we can always transform il and pl to the gen-
eric form

l 0
0 c

rl =e"

0 0

p eig

p ~ ~ I p j

~ ~ ~ Q Q

, (20)

p ~ ~ I ] Q

y(x, y) =exp( —
y /2)f(z), z =x+iy, (21)

where f(z) is an entire function. We consider a periodic
lattice with basis vectors L~ =

( L
~ ~

and L2 =i
( L2 (. In

order to fulfill periodic boundary conditions in the one-
particle coordinates [z;j, an integer number of flux quan-
ta N, must pass through the primitive cell spanned by
L

~
and Lz. The analytic part of 0' [the factor

exp( —Py;/2) is excluded), with N, electrons and Nt,
quasiholes centered at z l, . . . , z~„, is ' '

NIt Ne

F([z;j;Iz„})=F' (Z) + P6~(tr(z; —z„)/L ~ ~
r)

n li l

x + [O)(n(z; —z, )/L)
~
r)}"', (22)

where p and ( are real numbers and c=exp(2i8). It
should be noted that rP a: 1~ and pP ee 1~, which imply
a periodicity in the degenerate wave function given by M
revolutions instead of one revolution around the torus.
These representations are all irreducible.

(2) If c has a shorter period m such that c 1 and
1 & m & M, one can show that it is always possible to
find a basis such that p~ is a block-diagonal matrix,
where each block is an m x m irreducible submatrix with

the form given by Eq. (20). This means that these rep-
resentations are all reducible.

We will now consider Haldane and Rezayi's generali-
zation of the Laughlin wave function' for the fractional
quantum Hall effect to a system with PBC. '' This is a
special case of a translationally invariant system with

PBC in a homogeneous magnetic field which has a de-
generate center-of-mass (c.m. ) wave function. ' In this
system there is a set of m linearly independent solutions
for every particle configuration and the state vector may
be interpreted as an m-component wave function. Hence
the necessary condition for having our type of fractional
statistics is fulfilled.

The many-particle Laughlin wave function t is con-
structed from one-particle states in the first Landau lev-

el. In the Landau gauge, A Byi, these on—e-particle
wave functions have the form
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where

N,

Z= gzl, +—'gz„.
k ~n l

(23)

Here r=iL2/L~ and 01(u
~
r) is the odd elliptic theta

function which is entire and quasiperiodic in u. The c.m.
wave function F' (Z) is also a product of 0 functions
but has a degeneracy m =(N, NI, )/—N, . The important
observation is that each quasihole coordinate z„ is scaled
by a factor I/nt in the c.m. coordinate Z. This means
that even though the c.m. part F' (Z) is quasiperiodic
with periods L„ it is quasiperiodic in z„with the longer
periods mL, . If we choose a correct basis, and translate
one quasihole by I.„ it turns out that the degenerate
states mix in exactly the way described by the explicit
matrices of the braid-group generators zl and pl, with
M=m, given by Eq. (20). This global behavior is only
consistent with n/m statistics.

On the other hand, the action of ok may be simulated
by moving two quasiholes around each other without
changing the c.m. coordinate Z. Hence all degenerate
parts of the wave function will change by the same phase
exp(ie). For a system without PBC this phase has been
evaluated both by considering the adiabatic phase
change'3 and by rederiving the wave function as a mul-
tivalued wave function. ' When considering the local
action of al, and taking the thermodynamic limit at fixed
m there are no essential differences between the systems
with and without PBC. This means that 8 n/m, also in

our case.
Note also that the physical system should be invariant

(except for a phase proportional to the fluxes inside the
torus) under simultaneous translation of all coordinates
fzl„z„j by L,. Hence it is necessary that Nq (the num-

ber of quasiholes) is a multiple of m. This is the same
condition as that which must be satisfied in order to ob-
tain n/m statistics.

These three facts imply that the quasiholes in the
Laughlin wave function with PBC can be interpreted as
generalized anyons with n/m statistics.

We have shown that it is possible to obtain fractional

statistics, with O=np/q and GCD(p, q) =1, on a torus,
if the system is described by an M-component wave
function, where M is a multiple of q. In addition, q must
be a divisor of the number of generalized anyons 1V.

Furthermore, we have derived a generic form for the uni-

tary matrices representing the generators fz;j and (p;f in

the irreducible case where q =M and GCD(p, q) =1,
and we have seen that this form is applicable to the
FQHE with PBC.
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A. Karlhede, J. M. Leinaas, P. Elmfors, H. Johannesson,
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municated by S. Ostlund). After this Letter was accept-
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