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It is argued in the context of noisy, nonequilibrium Langevin models that systems with conserving
deterministic dynamics and noise which violates the conservation law always exhibit self-organized
criticality—spatial and temporal correlations that decay algebraically under generic conditions. Systems
with both conserving deterministic dynamics and conserving noise require spatial anisotropy to exhibit

self-organized criticality.
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In two interesting recent papers, Hwa and Kardar'
(HK) and Garrido et al.? (GLMS) studied classical, sto-
chastic, nonequilibrium dynamical models which exhibit
generic scale invariance. That is, the models have
infinite correlation lengths, correlations therefore decay-
ing only algebraically in space and time for generic pa-
rameter values. Such behavior stands in marked con-
trast to that of equilibrium systems, where scale invari-
ance is typically not obtained generically, but only when
a parameter (e.g., temperature) is tuned to a critical
value. The occurrence of generic scale invariance is
called “self-organized criticality” (SOC) by Bak, Tang,
and Wiesenfeld,> who make the intriguing suggestion
that it underlies the common appearance in nature of
both fractal structures* and 1/f noise.> (We reserve the
term SOC for situations where the correlation length is
infinite, so that not only temporal but spatial correlations
are long ranged, since in the presence of conservation
laws even equilibrium systems under generic conditions
exhibit “long-time tails,”® i.e., correlations that decay
algebraically in time at a given point in space, even
though spatial correlations decay exponentially. We also
treat only spatially homogeneous systems, and only sys-
tems without a continuous symmetry, since frustrated
systems such as spin glasses’ and systems with continu-
ously broken symmetries can exhibit generic algebraic
decays of spatial correlations even in equilibrium.)

The models of Refs. 1 and 2 respectively describe dis-
sipative transport in anisotropic open systems such as
sandpiles, and the diffusion of particles subject to an
external field which produces a current in one particular
direction. They are, therefore, very similar in spirit.® Of
particular significance is the fact that both sets of models
have a conservation law, a feature which, coupled with
the models’ nonequilibrium character, both groups of au-
thors have identified as the ingredient essential to the
emergence of SOC.

In this paper we try to elucidate and sharpen the con-
ditions under which SOC can be expected to occur in a

large class of stochastic nonequilibrium systems. Our
approach is to analyze, on the basis of symmetry and
conservation laws, noisy, single-component field-theoretic
models with relaxational dynamics, i.e., Langevin mod-
els; such models presumably represent coarse-grained
versions of underlying microscopic systems of interest.
Our main message is twofold: First, we argue that in
“strictly conservative” systems—systems (such as those
of Ref. 2 and certain of those of Ref. 1), wherein no al-
lowed dynamical process can change the conserved
quantity—a necessary and sufficient condition for the oc-
currence of SOC under generic conditions for spatial
dimensionalities d = 2 in the presence of intrinsic spatial
anisotropy, i.e., anisotropy that cannot be removed by
rescaling. (The models of both Refs. 1 and 2 are aniso-
tropic, and so constitute good examples of this principle.)
For d=1, SOC is more difficult to attain; in fully conser-
vative systems it does not occur even in the presence of
spatial asymmetry (e.g., particles preferring to move to
the left than to the right). For example, rather than ex-
hibiting SOC, the model of GLMS has correlations that
decay exponentially in space® for d=1, which can thus
be thought of as the “lower critical dimension™® for this
model. Second, we point out that when the conserved
quantity is conserved “only on average,” i.e., the deter-
ministic part of the Langevin equation of motion is
strictly conservative, while the stochastic or noisy part
allows occasional violations of the conservation law, one
always obtains SOC, even in isotropic systems, and even
ford=1.

It is interesting to note that the discrete *“‘sandpile”
models studied >'? as paradigms of SOC, and some of the
real sandpiles studied experimentally,'' do combine con-
servative deterministic dynamics with nonconserving
noise in the form of particles dropped randomly onto the
pile. In these discrete systems, no new particles are
dropped until the preceding avalanche has terminated:
The noise thus has long-range correlations in time; this
distinguishes these systems from the Langevin models
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considered here, where the noise acts at all times, and is
uncorrelated in time. Whether this difference changes
the universality classes to which the systems belong is
unclear, but it is noteworthy in and of itself that in con-
serving systems such as the Langevin models discussed
below one obtains'-? SOC without restricting the noise to
act only between deterministic relaxation events such as
avalanches. '?

One can understand the main ideas underlying these
conclusions by considering the simplest linear, noisy,
Langevin model that conserves the spatial integral of
some one-component field [A(x,7) in Ref. 1’s notation]:

Oh(x,1)/8t =v,V2h(x,t) +n(x,1) . (1

Here v, is a diffusion constant. The Gaussian random
noise variable n can, as discussed in Ref. 1, be chosen ei-
ther to conserve A strictly,

(nx,)nx,t')=2D . Vi+DV})s(x—x")6(t—1"),
(1a)
or not to conserve it except on average,
(n(x,)nx',t')=2D6(x—x")6(t—1') . (1b)

We will refer to Eq. (1) with noise correlations (1a) and
(1b), respectively, as models (1a) and (1b). In model
(1a), we have allowed for the presence of spatial anisot-
ropy by having two different constants, D, and Dy, de-
scribe the magnitude of the noise in two different sub-
spaces (denoted L and II), of the complete d-dimensional
space on which h(x,t) is defined. The introduction of
anisotropy in this way again follows Ref. 1 for simplicity;
the conclusions would not change were we to divide the
space into more than two inequivalent subspaces, etc.
Note that there should, strictly speaking, be different
diffusion constants for the L and Il directions in (1), but
a trivial rescaling of space allows us to treat them as
equal without loss of generality. Note, too, that one
need not include terms such as V;A(x,t) in (1), even for
anisotropic systems, such as those of Ref. 1, which lack
reflection symmetry in some (say, the ith) direction.
Such terms can be absorbed by the transformation
h(x;,t)— h'(x;,t)=h(x; —t,t). [One should, however,
allow for more general noise correlations in anisotropic,
strictly conserving systems. Even restricting oneself, as
we do here, to noise correlations that are purely local in
space and time, one might encounter problems whose
symmetry permits terms of the form V,V;6(x
—x')6(t—1t') in Eq. (1a). This possibility is discussed
below. ']

Let us first consider model (1a), which is precisely the
linear Langevin equation treated in Ref. 2. The model
is, of course, exactly solvable, as is made explicit in that
reference. In the anisotropic case D, # D), the model ex-
hibits SOC, i.e., algebraic decays of the correlations of
h(x,t) for arbitrary d and arbitrary parameter values.
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This is readily seen from the expression for the k-
dependent static susceptibility, y(k)=(|h(k,t)|?), viz.,
2&)=(D_ ki+Dik?)/vi|k?*|, whose Fourier trans-
form, the (anisotropic) equal-time correlation function
G(x)=(h(x,1)h(0,1)), decays with distance, x, like x ~¢
for large x. Note that, given our choice of spatial scal-
ing, which sets the coefficients of V1 and V7 equal in Eq.
(1), the difference between D, and Dy cannot be elim-
inated by further rescaling of coordinates.

When D, =D, on the other hand, (1) reduces to the
familiar time-dependent Ginzburg-Landau equation with
conserved order parameter,6 associated with the Hamil-
tonian H~ [h2. In other words, in the isotropic limit
Eq. (1) satisfies detailed balance for this underlying
Hamiltonian, the system is in equilibrium, and correla-
tions decay exponentially in space (though algebraically
in time) for generic parameter choices. [To see this easi-
ly from (1) requires the addition to the right-hand side
of the higher-order gradient term — v,(V2)2h(x,1); one
then finds spatial correlations decaying with correlation
length £~ (v2/v;) /2. In the nongeneric case wherein v,
and all coefficients of still higher powers of V2 in (1) are
taken to vanish, model (la) with D,=D; gives
2(k)=D_/vi;ie, G(x)=(D./v)8%x), so that £=0]

Since taking D, D) in model (1a) both violates de-
tailed balance and breaks spatial isotropy, there is some
uncertainty as to whether in fully conservative systems
the violation of detailed balance alone is sufficient to pro-
duce SOC. To see that typically it is not, and that spa-
tial anisotropy is also required, consider a general,
isotropic, fully conservative, local Langevin equation
with all possible terms analytic in the field 4 (x,t) and its
derivatives allowed. Such a model can be written'*

oh(x,1)/9t =v; VA[f({n(x, D)1+ n(x,t) . (2a)

Here the V? operator enforces conservation in the
isotropic system, and

SURD) =h = (a/v)IVIR+ -« +uh 2+ uh >+ - -
+w, (Vh)*+ - - | (2b)

where u,, u, etc., are coupling constants; the noise
correlations in (2a) satisfy

n(x,Inx",'))=[D,V*+D,(V2)2+ .. . ]
x6(x—x")6(t—1").

Consider the nonlinear terms of (2b): The simple
powers of h can be derived from a Hamiltonian. That is,
they satisfy detailed balance in the long-wavelength lim-
it, and so cannot be expected to produce SOC. The
lowest-order term which violates the detailed balance
condition is'> the w) term. It is straightforward to verify
by renormalization-group (RG) methods®'> that in any
dimension this term is, at least for small w,, an ir-
relevant perturbation, i.e., that it cannot change the
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long-distance, long-time behavior of correlation functions
given by the linear terms of (2b). Indeed, all of the non-
linear terms in (2b) are irrelevant, whether or not they
can be derived from Hamiltonians. The same is true of
the still higher terms indicated by the ellipsis in (2b).
Thus the short-range (exponentially decaying) correla-
tions predicted by the linear terms of model (2) [ie., of
model (1a) with D, =D,] are robust against the addi-
tion of small nonlinearities. This seems very natural
physically: It would be surprising to have the extra fluc-
tuations represented by the nonlinear terms of (2) in-
crease the range of correlations present in the linear
theory. We conclude that (barring the occurrence of a
stable strong-coupling fixed point that gives rise to SOC
for large values of the nonlinear coupling constants'®),
isotropic, fully conserving systems of the type (2) do not
exhibit SOC, even when they violate detailed balance.

It follows that the SOC derived in Ref. 2 for model
(1a) with D, =D, is a consequence not merely of the
model’s nonequilibrium character, but of its spatial an-
isotropy. [Note that even if D, =D), higher-order an-
isotropic terms like Vif6(x —x') on the right-hand side of
(1a) are sufficient to produce SOC.] It remains to be
seen whether the generic scale invariance of this linear
anisotropy theory survives the inclusion of nonlinear
terms. As pointed out in Ref. 1, the lowest-order non-
linearity consistent with the conservation law that can be
added to the right-hand side of Eq. (1) is V;[h(x,1)]>%
This term is obviously appropriate only for systems
without reflection symmetry in the ith direction. Simple
power counting'® shows that it is irrelevant for any di-
mension d greater than the upper critical dimension,
d, =2. All nonlinear terms containing either higher gra-
dients or more powers of the field 4 than this lowest non-
linearity can be shown irrelevant for all d > 1. Now for
d=1, even the linear (strictly conserving) theory (la)
has exponentially decaying correlations rather than
SOC, since there are not enough directions available to
have D, =D,. It is unreasonable to expect that non-
linear fluctuations will increase the range of correlations;
one concludes® that no SOC can occur for d=1 in the
strictly conserving case. Restricting oneself to integer di-
mensions, therefore, one is left with only d=2 and non-
linearities of the form V;4? to consider.

HK (see also Ref. 8) have already treated the 2D case
with reflection symmetry missing in only one of the two
directions, i.e., model (la) wherein the | and L sub-
spaces comprise one dimension each, and with the term
Vih? added to the right-hand side. They show by RG
methods that in this case the nonlinearity is marginally
irrelevant, so that SOC persists. That leaves only the
maximally asymmetric possibility, with both V;42 and
V. h? added to the right-hand side of (1), their coef-
ficients being different in the absence of any special sym-
metry that dictates otherwise. [It turns out that in this
situation symmetry also admits the contribution
V,.Vi6(x—x')6(t—1t') to the noise correlation of Eq.

(1a).] It is straightforward to verify by RG analysis
(details to be given elsewhere®) that both the nonlinear
terms are likewise marginally irrelevant in this case [and
that, as in Ref. 8(b), the system satisfies detailed balance
right at the fixed pointl. Thus SOC is always obtained
in strictly conserving, anisotropic situations.

Let us turn now to model (1b), where the noise does
not conserve the field A(x,t) strictly, but only on aver-
age. Thus the deterministic part of the equation is con-
serving but the noise is not, a mismatch which breaks de-
tailed balance,®'* making the model a nonequilibrium
one. It is easy to check by explicit solution that under
these conditions the linear theory (1) gives rise to SOC
whether or not there is any spatial anisotropy in the sys-
tem: The static susceptibility y(k) diverges like 1/k 2 for
small k, producing equal-time spatial correlations G(x)
that decay like x ~@=2 " To show that SOC survives the
addition of nonlinearities, one need only make the (rath-
er mild) assumption that y(k) is a continuous function of
k near k=0. This assumption suffices to demonstrate
that SOC persists in the presence of arbitrary nonlinear
terms on the right-hand side of (1), provided only that
those terms conserve the field A. The point is that con-
servation implies the equation

9h(k=0,t)/9t =n(k=0,1) 3)

for the k =0 Fourier component of 4. Equation (3), to-
gether with the noise correlations (1b), imply that h(k
=(0,t) undergoes a random walk in time. Thus
(|h(k=0,t)|* diverges like t as t— o; i.e., the static
susceptibility y(k=0) is infinite. The continuity as-
sumption then implies that y(k) blows up as k — 0, im-
plying long-ranged, rather than exponentially decaying,
equal-time spatial correlations. The most likely scenario
is that, as in the linear theory, these correlations decay
algebraically in space, though any decay slow enough to
produce an infinite susceptibility is conceivable. The
model of Ref. 1, wherein the nonlinear operator Vih2is
added to model (1b) (with one particular direction desig-
nated as ), is an example of a nonlinear theory with
algebraic decays for all 4, the linear theory being quanti-
tatively correct above the upper critical dimension of 4.

Thus we expect that the peculiar (manifestly none-
quilibrium) combination of conserving deterministic dy-
namics and nonconserving noise produces SOC quite
generally, both for isotropic and anisotropic systems.
Unlike for the fully conserving models considered earlier,
there seems no reason not to expect SOC to obtain in di-
mensions down to and including =1 in this case.'? It is
worth reiterating that, while both discrete sandpile mod-
els>'% and real experimental sandpiles'' do combine con-
servative deterministic dynamics with nonconserving
noise in the form of particles dropped randomly on the
pile, the noise acts only between individual avalanches,
i.e., has rather special correlations.

Several systems without conservation laws either ex-
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hibit or have been suggested to exhibit SOC. Perhaps
the best known of these are ordinary continuum interface
models'>!7 with translational symmetry, i.e., wherein the
interface can be uniformly translated in a direction
transverse to itself without any energy cost. The spatial
correlations in such systems are indeed algebraic'’ under
generic conditions. It may, however, be somewhat mis-
leading to describe these systems as having SOC, since
translational invariance of the interface does not occur
generically, but only when the parameter (e.g., gravity),
which tends to pin the interface at a particular height, is
set to zero. (One might argue that the imposition of a
conservation law is likewise nongeneric and amounts to
adjusting a parameter, so precisely what one calls SOC
becomes a matter of taste; conservation laws are, howev-
er, ubiquitous.)

Models for the spread of forest fires or disease'® have
also been proposed as displaying SOC, but these quite
explicitly require the adjustment of a parameter to
achieve power-law decay of correlations, and so do not
seem fundamentally different from equilibrium systems
wherein algebraic decays are obtained by tuning, e.g.,
the temperature, to a critical value. Interesting recent
suggestions'® that the “game of life” cellular automaton
exhibits SOC remain as yet imperfectly understood.
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