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New Calculational Method for Epitaxial Energy: Application to an Axial Commensurate Interface
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A new "'mapping technique ' is introduced which allows the study of epitaxy in systems that are com-
mensurate or incommensurate. This method is applied to the epitaxy of fcc(111)/bcc(110) which is

commensurate in one direction and incommensurate in the other. The mapping technique predicts a new

epitaxial orientation, in good agreement with recent experimental results. The use of second-order per-
turbation theory in conjunction with the mapping technique predicts a change in epitaxial orientations as
a function of island size and stiA'ness of overlayer lattice.

PACS numbers: 68.55.Gi, 68.55.Jk

A microscopic understanding of the nature of epitaxy
has been a long-standing subject of experimental' and
theoretical interest. Recent developments and capa-
bilities, in experimental techniques and computational
methods, have given a renewed impetus to studies geared
towards the understanding of epitaxial growth at the mi-

croscopic level. Epitaxial growth has been experimental-

ly accomplished in a large number of systems including
lattice-matched and -mismatched systems. Theoretical
efforts have been based on a number of phenomenologi-
cal methods, Monte Carlo simulations, and molec-
ular-dynamics simulations. However, in many cases,
these methods are not able to predict satisfactorily the
energetics of epitaxial growth, especially as a function of
system size and temperature. We present here a novel

computational method ("mapping technique") which al-
lows the calculation of epitaxial energies in large-sized
commensurate and incommensurate systems. This tech-
nique is then applied to the extensively studied fcc(111)/
bcc(110) system, which is only commensurate along one
crystallographic direction. We find a new epitaxial
orientation, so far unpredicted, which is in good agree-
ment with experimental observation. The mapping
technique in conjunction with second-order perturbation
theory predicts a change in epitaxial orientation as a
function of size and stiffness of lattices in qualitative
agreement with a molecular-dynamics simulation.

An ideal epitaxial configuration (IEC) is obtained
when two lattices which may differ in symmetry are in a
coherent lattice-matching situation, i.e., for instance, in

one-dimensional interfaces, when the lattice-constant ra-
tio p b, /b, is a rational number, where b, and b, are
surface lattice constants of overlayer (a) and substrate
(s) lattices, respectively (for two-dimensional interfaces,
it also depends on the relative orientation 0). There are
an infinite number of the coherent matches. However,
considering the interfacial energy difference between the
coherent and noncoherent matches, most coherent
matches are indistinguishable from noncoherent matches
in an experiment, except for very few coherent matches
[for example, only four matches in the fcc(111)/
bcc(110) system, as will be seen later]. Only these few
coherent matches will be labeled as IEC and we define

the lattice-constant ratio of this system as p, . For
configurations away from the ideal, ptv (Ap, ), the total
adatom-substrate (a-s) interaction energy (V„)forces
all adatoms to be matched coherently with the substrate
lattice whereas the total adatom-adatom (a-a) interac-
tion energy (V„)tends to keep adatoms in the equilibri-
um positions of the natural (unstrained) overlayer struc-
ture. The system reaches equilibrium at an intermediate
configuration p', between ptv and p„atwhich the driving
force toward an IEC by the total a sintera-ction
[ —(d V„/hp) ( ] is equal in magnitude and opposite in

direction to the strain force [—(d, V„/Ap) ~
]. However,

for an infinite-size system at zero temperature, the total
a sinterac-tion exhibits b-function-like minima as a
function of the lattice-constant ratio p at the exact com-
mensurate lattice points, i.e., V„(p) g~, Vo(p, )
&b(p, —p)/bo, where b(0)/bo 1. Thus, for infinitely
large non-IEC systems, a strained epitaxial layer cannot
be formed since the driving force, —hV„/hp, is zero. In
real systems, however, these b-function minima are
broadened due to finite-size and finite-temperature lat-
tice relaxations. Although understanding these broaden-
ing effects is very important for epitaxial growth, to our
knowledge no clear-cut theoretical scheme has emerged
which allows systematic studies of the finite size and
temperature dependence of epitaxy.

In this Letter, we introduce a new technique
(mapping technique) to study epitaxy which addresses
the issues raised above. The two assumptions of this
technique are as follows: (1) The original crystal sym-
metry of the two lattices is undisturbed by the a sin--
teractions; (2) the a sinteraction -potential has the
periodicity and symmetry of the substrate surface lattice.
Clearly, the first assumption is a rather oversimplified
situation for a real system. The rigidity criterion has
been tested from the misfit dislocation analysis. In fact,
many metal-on-metal systems exist for which the rigid
model (and the elastic model) provides an adequate
description. The calculation is done in two steps. First,
we calculate the ideal epitaxial configurations and
broadening of energy minima due to finite-size effects us-

ing the mapping technique. Then, we calculate tempera-
ture effects using second-order perturbation theory and
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compare with the usual molecular-dynamics-simulation
results. As an example, we study the fcc(111)/bcc(110)
system. However, our methodology can readily be ex-
tended to any lattice-mismatched system.

Because the a -s interaction is assumed to have the
periodicity and symmetry of the substrate surface lattice,
the total a-s interaction per adatom can be written as

JV hf, 3V

V., = ' QQV(r„r,)= ' QV, +e '", (1)
) ' &aG

where 6 are reciprocal-lattice vectors, r; denotes the po-
sition of adatoms, and N„N, are the total number of
overlayer and substrate atoms, respectively. Since the
potential, Eq. (1), is a one-particle potential and periodic
with the substrate-surface-lattice vectors, a convenient
way to evaluate Eq. (1) is to map all the overlayer atoms
into a unit cell of the substrate lattice. For a large sys-
tem, the summation over i in Eq. (1) can be converted to
an integration over the unit cell:

V„=gVG drf(r)e ' "e ', (2)
1

4 cell

where "cell" denotes integration over the substrate-
surface-lattice unit cell, v, is volume of a unit cell, f(r)
is a distribution function, and rp is the origin of the over-
layer. For the lattice-constant ratio p=n/m, ' where n

and m are integers (denoted as "mth-order" commensu-
rate lattices), f(r) will be m equally spaced points in the
unit cell. The leading-order term in V„,of mth-order
commensurate lattice, is proportional to the mth-order
term in the Fourier series of the overlayer-substrate po-
tential. When m =1, the mapping pattern, f(r), is a sin-

gle point and V„is lowest.
For incommensurate lattices, f(r) will be a uniform,

constant distribution. V„ofthe incommensurate lattice
is just the space average of the potential, VG p=(1/v, )
x f„11drV(r). For a short-range interaction, V„for a
high-order commensurate lattice (m & 3) is very small,
since the corresponding terms in the Fourier series are
small and almost the same as those of the incommensu-
rate lattices. Thus, the commensurate-lattice matches

p, =n/m (Ref. 10) for m ~ 3 will be labeled as IEC.
For an infinite system, V„consists of 8-function-like
minima at IEC because configurations slightly away
from IEC are either incommensurate or very-high-order
commensurate (which is not much diff'erent from incom-
mensurate as far as energy is concerned). For a finite-
size system, however, the distribution f(r) is not uniform
and may be concentrated in selected areas of the sub-
strate unit cell, and as a consequence, the interfacial en-
ergy minimum will have a finite width.

The fcc(111)/bcc(110) system is particularly interest-
ing since it has been extensively studied, both experimen-
tally ' and theoretically, using conventional tech-
niques. In this system, the two lattices can only be in-

commensurate or partially commensurate. (A system
commensurate along the x or y direction must be incom-
mensurate along the other direction. '' This is denoted
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TABLE I Relative orientations 0 lattice-constant ratio p at
minima, and width a of the interfacial energy minima, V„
= V„(p),for the first four lowest-order axial commensurate
lattice-matched systems of fcc(111)/bcc(110). The fourth
column represents the reciprocal-lattice vectors, G„,that con-
tribute to the energy minima and % is the radius of a cluster
disk. Once the functional form of the a-s potential is specified,
the well depth can be calculated as discussed in the text.
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as an "axial commensurate" system. ) For more than

fifty years only two epitaxial orientations have been
found experimentally and theoretically: Kurdjumov-
Sachs (KS) orientation' (p=1.089, 8=5.26') and Ni-
shiyama-Wassermann (NW) orientations' (p =0.943,
8=0' and p =1.155, 8=0'). Recently, an experimental
study observed a new orientation [Homma- Yang-
Schuller (HYS)] for p=1.333, 8=30'.

We apply the mapping technique described in the pre-
vious paragraph to calculate the ideal epitaxial con-
figurations. We find an infinite number of axial com-
mensurations but only one first-order' (p=442/343,
8 = tan ' [(J6 —2)/( 42+ 2J3)] = 5.26', KS orienta-
tion), one second-order' (p =242/3, 8=0', NW orien-

tation), and two third-order' (p=2/J3, 8=0', NW
orientation and p= -', , 8=30', HYS orientation ) com-

mensurate matches. The results for these four leading-
order epitaxial orientations are reported in Table I. V„
for higher-order commensurate matches are too small to
be observed experimentally.

Figure 1 shows the mapping pattern for a circular
overlayer of N=9961 atoms near the KS orientation

(p, =1.089). The mapping pattern is a constant distri-
bution along the incommensurate axis (y') and a band
along the commensurate axis (x'). Considering a circu-
lar disk of radius R mapped into the band, the distribu-
tion function can be approximated by f(r) =(4/xptr)

[1 —(x'/xp) l' for ~x'/xp~ ~ 1 and f(r) =0 for
lx'/xp~ & I, where xp=cRb, Ap/b, is the half-width of
the band, c is a constant that depends on epitaxial orien-
tation, x' is a position variable along the axial commens-
urate axis (see Fig. 1), and hp= ~p

—p, ~. After in-

tegration of Eq. (2) with the above f(r), the size-

dependent V„becomes
V„=gVG

[Ji(asap)/asap]i5'G

=p,
G

where Jl is the Bessel function of the first kind, G=G~
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FIG. l. The mapping pattern, f(r), for a 9961 circular ada-
tom cluster near KS orientation. x' and y' denote commensu-
rate and incommensurate axes, respectively.
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+Gti, G& and Gii denote the reciprocal-lattice vectors of
the substrate surface lattice along the direction perpen-
dicular and parallel to the axial commensuration, respec-
tively, and a = i Gii i crab, /b, is given in Table I. The
shape of the miminum depends on the geometrical shape
of the cluster but does not depend much on the details of
the potential as long as VG decreases rapidly with in-

creasing G. The reciprocal-lattice vectors that satisfy
the condition bG, -n are presented in Table I for all four
epitaxial orientations. Once the functional form of the
potential VG is specified, the well depth can be calculat-
ed from Eq. (3). As the size of cluster increases N,
(i.e., 8 ac ) the b-function-like minimum is recovered.
Further details of the calculation will be published else-
where. '

In Table II, we present V„for two different sizes of
the overlayer at a lattice-constant ratio p 1.14. For the
smaller size, N, 127, the KS orientation is lower in en-

ergy than the NW orientation, whereas the NW orienta-
tion is lower for the larger one, N, =547 (V„doesnot
depend on the relative orientation of the overlayer).
Thus, there must be a crossover region where an epitaxi-
al orientation shift from KS orientation to one of the
NW orientation (p=1.155, 8=0') as the overlayer
grows in an experiment.

In order to study finite-temperature effects, we employ
a second-order perturbation calculation. For the sake of

NW

KS

547

127

—0.077
—0.071
—0.080
—0.099

TABLE II. Overlayer-substrate interaction energy at
p =1.14 for two different overlayer cluster sizes.

Orientation

simplicity, we consider a situation wherein the substrate
lattice is much stiffer than the overlayer lattice (which
may be a good approximation for a case of a thin ad-
sorbed layer). By treating the a-s interaction as a per-
turbation to the a-a (and s-s) interaction, second-order
perturbation theory yields

F = —g VgiGi e /2M v iK —Gi (4)
K, G

where M„K,G, v„and e are mass of an adatom,
reciprocal-lattice vectors of overlayer and substrate lat-
tices, the velocity of sound on the overlayer, and the
Debye-Wailer factor, respectively. Since perturbation
theory is not valid for small i K —G i (hence small hp),
we are not able to estimate accurate temperature-
dependent results especially near the minimum. Howev-
er, we can investigate some qualitative feature of tem-
perature effects and compare with numerical molecular-
dynamics (MD) results. We note that a more rigorous
theory is necessary for an accurate calculation of tem-
perature effects on the interfacial energy of real system.

For comparisons at finite temperature, we employ a
standard molecular-dynamics-simulation technique for a
397-atom hexagonal overlayer cluster on a 1141-atom
movable-substrate layer that is supported by a rigid
bcc(110) substrate layer. In order to prevent the over-
layer from rotating (or orientational oscillation) during
the calculation of the orientation-dependent V„atan

angle away from minima, a rigid fcc(111) template is
used to hold the overlayer at a fixed angle. For a-s and
a -a interaction potentials, the well-known Lennard-
Jones (LJ) 12-6 potential with a cutoff at r, 2.5a is

employed and a harmonic potential is used for bcc
substrate-substrate interaction potentials. Initially, ada-
toms are placed in the close-packed positions (a stable
configuration for a LJ system) and substrate atoms at
bcc(110) lattice points. The velocity of the atoms is as-
signed according to the Maxwell-Boltzmann distribution.
The potential strength between an adatom and a sub-
strate atom is 0.125m, whereas a-a and s-s interaction
potential strengths are e. These potential strengths are
chosen so that the overlayer and substrate keep their
crystal symmetry. The simulation is carried out to cal-
culate V„,at temperatures T 0.0 and 0.1 (bulk melting
temperature of the LJ solid is T =0.68) in standard
LJ units in which o, e, e/ks, and tv=(ma /e) ' are the
length, energy, temperature, and time units, respectively,
where m and ks are the mass of each atom and the
Boltzmann constant.

MD results are plotted in Fig. 2, at T=O.O (open cir-
cles), and at T =0.1 (solid squares) for a KS orientation
as a function of the lattice-constant ratio p. V„calcu-
lated by the mapping technique for 397 atoms is includ-
ed (solid line). In order to evaluate Eq. (4) (dotted line
in Fig. 2), v, is calculated from the dynamical matrix of
the LJ crystal for the polarization vector parallel to 6
and the Debye-Wailer factor is calculated from the nu-
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the fcc(111)/bcc(110) interface correctly predicts the
experimentally observed epitaxial orientations. A finite-
temperature calculation using second-order perturbation
theory and a molecular-dynamics simulation predicts a
broadening of the energy minima as a function of lattice
parameters. As a consequence, transitions from one epit-
axial orientation to the others should be observable as a
function of cluster size and stiAness of lattice.

This work is supported by NSF, Grant No. DMR 87-
01921. Supercomputer time has been provided by the
University of California, San Diego, Supercomputer
Center.

FIG. 2. Energy per overlayer particles of the fcc(111)/
bcc(110) system, as a function of lattice-constant ratio near
the KS orientation for a total number of adatoms N, 397.
The open circles and solid squares represent MD results at
temperatures T 0.0 and 0.1 in LJ units, respectively. The
solid line is the calculated results using the mapping technique
at T 0.0 (to be compared with the open circles) and the dot-
ted line using second-order perturbation theory at T 0. 1 (to
be compared with the solid squares).

merical results of the mean-square displacement (
~
u

~
).

At zero temperature, our numerical results are in excel-
lent agreement with the analytic calculation using the

mapping technique. At finite temperatures, the pertur-
bation-calculation results qualitatively agree with the
MD results. The anisotropic broadening at finite tem-

peratures is due to the anharmonic a-a interaction po-
tential (LJ potential) and does not show up when we re-

place the a-a interaction with a harmonic potential. One
important diff'erence between the finite-temperature
(with finite stiffness) results and the finite-size effects is

that the finite-temperature effects do not generate secon-

dary peaks while the finite-size effects do. We note that
the secondary peaks (due to finite-size effects) are real
physical effects, not numerical artifacts. At T=0.1, the

energy for the KS orientation (solid squares in Fig. 2)
near p=1.155 is about —0.086m and lower than the
minimum energy of the NW orientation (see Table II).
Thus, the KS orientation is more stable than the NW
orientation. In fact, we find no minimum at p=1.155,
0=0' in a finite-temperature simulation at T=0.1. As
the stiff'ness of the overlayer lattice increases [i.e., the ve-

locity of sound in Eq. (4) increases] E decreases and

size eAects dominate the broadening. When the a-a
interaction-potential strength increases to 16 times that
of the a-s interaction, the MD results at T=0.1, are al-

most the same as the zero-temperature rigid-lattice cal-
culation in which the NW orientation is stable near

p = 1.155.
In conclusion, we have developed a mapping technique

to study epitaxy in lattice-mismatched partially com-
rnensurate interfaces. An application of this theory to
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