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Transverse Interactions and Transport in Relativistic Quark-Gluon and Electromagnetic Plasmas
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In calculating the transport properties of relativistic electromagnetic or quark-gluon plasmas micro-

scopically, one encounters the problem of divergent constituent cross sections arising from the exchange
of transverse photons or gluons. This paper shows how inclusion of Landau damping of the virtual quan-

ta exchanged provides an effective long-wavelength cutoff. The dominance of Landau damping over a
possible magnetic mass in QCD is demonstrated in the weak-coupling limit. The viscosities of a pure

gluon plasma and of a quark-gluon plasma are calculated in weak coupling from a variational solution to
the Boltzmann equation.
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Calculation of the properties of relativistic plasmas,
whether electromagnetic or quark-gluon, requires that
one include the long-range transverse, or "magnetic, " in-

teractions of the constituents of the plasma. The scatter-
ing of two particles via either longitudinal or transverse
photon exchange, or gluon exchange in a quark-gluon
plasma, has a small-angle divergence, as in Rutherford
scattering. Debye screening eliminates the divergence
froin longitudinal exchange, but the transverse elec-
tromagnetic or color-magnetic interactions are not sim-

ply screened. The latter are generally neglected in non-

relativistic plasmas because particle velocities are much
less than the speed of light. However, if one naively in-

cludes them, for example, in calculating transport pro-
cesses in the early Universe prior to the h; iization
transition, or in neutron stars or white dwar ne finds

vanishing transport coefficients. A similar problem is en-
countered in calculating the approach to local equilibri-
um in the deconfined matter expected in ultrarelativistic
heavy-ion collisions. (In addition, the long-range mag-
netic interactions cause a breakdown of the Landau-
Fermi liquid theory in degenerate systems —even nonre-
lativistic electrons in a metal, albeit at exponentially
small temperatures. ) The question is, what physics leads
to finite answers for observable quantities?

The physics of screening, for both electromagnetic and

QCD interactions, is qualitatively different for the longi-
tudinal and transverse parts of the interaction. For the
longitudinal, or "electric" part, the interaction is cut off,

in both cases, at a distance -qD ', where qD is the De-
bye wave number. In a quark-gluon plasma at zero
baryon density, ' qD=(NI+2N, )g T /6, where Ny is
the number of quark flavors, N, is the number of colors,

g is the QCD coupling constant, and T is the tempera-
ture. Static magnetic fields in a normal QED plasma,
e.g., a metal, are not screened out at large distances;
magnetic fields are screened only in a superconductor.
On the other hand, as a result of its nonlinear structure
QCD may possibly develop a spontaneous magnetic mass
or screening wave number q -g T. However, as we4,5 2

demonstrate in this paper, in both QED and QCD mag-
netic interactions at finite frequencies, and hence at finite
temperatures, are screened at large distances -qD ' due
to the Landau damping of the virtual photons, or gluons,
whose exchange produces the transverse interactions.
This effect in thermal quark-gluon plasmas overwhelms
that of a magnetic mass for small g.

We illustrate how the Rutherford-type divergences of
magnetic interactions are treated by calculating the
viscosity of a quark-gluon plasma in the weak-coupling
limit. Extensions to other physical situations will be dis-
cussed in separate publications. The viscosity is a sum of
contributions from quark and gluon degrees of freedom.
We first consider the viscosity of a pure gluon gas. The
physics is most simply described by the Boltzmann equa-
tion for gluons, studied in the rest frame of the plas-
ma. ' In the presence of a small time-independent ve-

locity field in the x direction, u(y), varying with y, the
Boltzmann equation is

tin| Bu,
pi~~'1,

'
=2trvg 2 I ~ I '[nin2(1+n3)(1+n4) —(I+n~)(1+n2)n3n4]b(e~+e2 —e'3 —e4)$ + +, (I)

t 2.r 3.t 4
P I P24 P3 P4 s

where e;, p;, v;, and n,; are the gluon energy, momentum,
velocity, and occupation number, and the factor vg =16
represents the sum over target gluon spin and color. We
work in units in which A, =c=l. The squared matrix
element I M I for scattering gluons from states one and
two to states three and four is given by I Af.

I /16e~e2e3e4,
where I P. I is the invariant gluon-gluon scattering ma-
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i
trix element squared, summed over spins and colors in

the final state, and averaged over initial spins and colors.
To lowest order in g the bare interaction gives'

1990 The American Physical Society 1867



VOLUME64 N UMBER 16 PHYSICAL REVIEW ETTERS 166 APRrL 1990

where s, t , and u are

=0 th f e

ss-

e utherfo
um transfe

- ype diver q

include the
er.

1h om'nta of the
2. For small q th

ing to p and p'.

rs at small momrs at sm
p. Since the d'iver-

y on the sm 11- r
s ers,

element (2)

ributions to
ar part of the ba

screenin in t
pproximation (o oop rer ' t

FIG. l.. The vectors invrs involved in thee scattering.

the and that
rix

at containin gP2 " P.

tric part
q, gl iscl ose to 1; the

he s ion is screened out
t erh d, g= —'

g etic part of the ie t e interaction is approx-

n d t -d d t 1

he leading fin't-
ginar

ae

ary because the ar
a e absorption o a gluon acc

guon, k, or, or antiquark.
p"r''s fo b dd

ed here the 1considere
r i enk'

considered t

Y

the decay f
is screening at fi

'

omalous k
o t

S 1S

ce in QCD pl as emp asmas was em

To calculate the vis

as emphasized

cosity
h di ib ution fun te istnb

'
c ion as

hee local equilibrium

q qDXI(p)

(1 —
p ')cosy

q2(1 2—p )+qDx (p)
(3)

Here p =co/—co q, and g~ and g&, given by

g((p) =1 —&1ln

(4)
2

x(p)=" +""," ' @+1

sent th

x

repre on the ion ite eN'ect

nteractions w'
pin s with the pl .

'
o

odfi .) T
h b h 1 ontainino t 'ning p~ and

which
The d

(5) are
on the right-hand

1 metry @ mu

uct

We calculate the vise

P must be of the

n g, this latt

y trial

1'"d' 't

weak cou 1

t' "1'""th
t ose over

e magnitud
s q are im-

dth e relative an lee ang es between

868

q and ="-"=q p has the

form Jdph(p) Jdq ' ', ere h

inal contribution

, and an int

o a

erference t o g

g
q is cut

leadin d

,„-Tis ax.imum m

co
'

n rom transv
momentum tr

(cosos p dqq'/

0
y, gives

g al over q t

ln qmax/ql(p) I =in(qmax qD 9 q p

ng over p, the second tg er t t ere gives no 1

i mic contrib t eri ution from the

p lx v I, =2xv

ere n; =(e '

I, ,(1 + ,)(1+
distributio

'
n

12 P3 Pc

n n4

u io
'

n; one finds

we ma w' '
e

E3 E4)8
2 p3

ay write in the

Pi+ f2, P3+

itib tio unctions
„oI I)

t.4, P, P, )+42 —N—,,i, i —@4),



VOLUME 64, NUMBER 16 PHYSICAL REVIEW LETTERS 16 APRIL 1990

cross term is —2cospln(qma„/qD), so that the net result
of the q integration is (1 —cosp) In(q .,„/qD). There-
fore to logarithmic accuracy one finds the same result as
if q, were simply replaced by qD, even though as p 0
the p-dependent cutoff in the transverse amplitude tends
to zero. This simplification reflects the fact that process-
es in which p is small do not play a dominant role.
Indeed, one can calculate the leading terms in transport
coefficients by using the bare interaction cutoff at qD,
without explicit decomposition into longitudinal and
transverse parts, even though the underlying physics is

very difl'erent in the two cases.
Were a magnetic mass term q (assumed q and co in-

dependent) present in the denominator of the transverse
scattering amplitude in Eq. (3), the ln i qD/q&(p) i term
above would be altered to —, ln i (g&+qm/qD)/(I p ) I

The efl'ect of a magnetic mass is therefore only of the or-
der (q /qD) -g in the added constant term; it does
not contribute to the logarithm.

Gluon-gluon scattering is symmetrical under inter-
change of the t and u channels, and therefore small-u
processes also contribute to the logarithmic term. How-
ever, in summing over the momenta p3 and p4, one must
insert a factor —, to avoid overcounting identical final

states; thus for gluon-gluon scattering one can equiva-
lently neglect both the u-channel singularity and the fac-
tor —,'. For small s the apparent -s ' singularity does
not contribute to the logarithm since for small s the
gluons are almost collinear, and therefore t and u are
also small.

Calculating all integrals to leading logarithmic order
without approximation, we find that

(eirie&= g T ln
R' qD

dp, (6)

2 x15x((5) T
0 342

T'
gg

n g In(T/qD) a lna
(7)

where a =g /4z. Equation (7) diff'ers from that for the
optimal v (=2.104) by 0.37%. In the simplest variation-
al estimate one usually takes a trial function

i
+& = iX&,

corresponding to v=1, which gives a viscosity 0.492
times that with v=2. The result obtained by Hosoya
and Kajantie using a relaxation-time approximation is

where fi(p) =p d[f(p)/p ]/dp. The absence of a dou-
ble integral —fdpdp'f(p)f(p') is due to an accidental
cancellation dependent entirely on the form of the in-

teraction.
From the variational principle one can derive a

Fokker-Planck equation for f, and thus obtain its func-
tional form, but here for simplicity we make variational
estimates of the viscosity, assuming f-p" The result-.
ing viscosity of the pure gluon gas, gg, for v =2, is

0.36 times Eq. (7). We may define a viscous relaxation
time by writing the viscosity as ri=(XiX&r„, a form
motivated by the relaxation-time approximation, i X&
= iN&/r„; then the variational estimate for the relaxa-
tion rate is

Tg g

7

(XiX&=. . . , Tg" ln(g ')
rio 2'x 3'x 5'x g 5 '

=4.11Ta ln(a '),
where the numerical evaluations are for v=2.

We now include the contributions to the viscosity of
quarks and antiquarks, which transport momentum as
well as scatter quarks and gluons. The calculations are
similar to those for gluons alone, except that the vectors
iX& and i@& must be labeled by particle type. For sim-

plicity we take zero baryon number, so that the quark
and antiquark distribution functions are identical. The
independent deviation functions are f~(p) for quarks and
antiquarks, and fz(p) for gluons. The general expres-
sions for qq and qq scattering depend on whether or not
the flavors are identical. The situation we consider, how-

ever, possesses a simplifying feature: The singular con-
tributions to the interaction are the same for all pairs of
quarks and antiquarks since, as with gluons, the factor 2
from the separate singularities in t and u for q (or q)
with identical flavors is canceled by the extra —,

'
in the

final states. Hence all q's and q s are taken into account
by considering quarks of a single flavor, but with an ad-
ditional degeneracy factor 2NI. The absence of cross
terms in the momentum integrals that we found in (6) is

a property of the angular parts of the integrals, and is in-

dependent of the Bose or Fermi nature of the scattered
particles. Consequently, the Boltzmann equations for
f~(p) and fv(p) decouple, and the total viscosity may be
written as rl r&v+rl~, a sum of quark and gluon contri-
butions. For simplicity we assume that the deviation
functions are both proportional to p', so that they differ

by only a multiplicative constant. For v 2 and Nf
quark flavors one finds

g 3x5
T/g rIq 9 Nf rig 1 70Nf rig (9)

1+Nfl'6 2 x7

The ratio gq/rl~ includes a factor ( —,", ) / —', from the
difl'erences between Fermi and Bose integrals, a factor
3Nf/4 which is the ratio of the number of q plus q helici-

ty states, 12Nf, to that of the gluons, vg =16, and a fac-
tor —', in the denominator, which is the ratio of i M i for

qg and gg scattering. In fact, the
i
M i for qq, qg, and

gg scattering are all proportional, with factors 9.2: 2,
respectively, a geometric progression resulting from the
factorization of the single Feynman diagram that con-
tributes in the weak-coupling limit. We see that scatter-
ing from quarks increases scattering rates by a factor
1+Nf/6 for both quarks and gluons; the first term repre-
sents scattering by gluons, while Nf/6 (given by the ratio
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of helicity states times 9 in the matrix elements, times
for a Fermi rather than Bose integral) arises from

scattering by quarks. This ratio is independent of the
scattered particle because of the dominance of small-
momentum-transfer processes, together with the above
factorization. We also see that quarks contribute sig-
nificantly more to the viscosity than do gluons, a result in

accord with Ref. 7.
The total viscosity is thus given, for Ny =2, by

3

ri=232
z

Me fm c '. (10)

The viscosity of the plasma is generally larger, for a & 1,
than that of hot-nuclear matter, estimated to be'
t)-82[T/(200 MeV)] 'I MeVfm c '. The viscous
relaxation time in weak coupling for quarks is a factor
( —', '„)=2.58 times that for gluons; the gluon viscous re-

laxation time, from Eqs. (8) and (9), is at least of order
1 fm/c. While these results provide a first estimate of
the time needed to equilibrate a quark-gluon plasma pro-
duced in an ultrarelativistic heavy-ion collision, it should
be kept in mind that they are derived in the weak-

coupling limit; relaxation times in the strongly interact-
ing nonperturbative regime could be considerably short-
er.

The crucial result of this paper is that Landau damp-
ing of transverse gluons or photons provides the physical
basis for treating the long-wavelength divergence associ-
ated with transverse exchange processes. We note that
Landau damping plays an even more important role in

degenerate systems than in thermal plasmas. For the
electron gas, Holstein, Norton, and Pincus showed that
as a consequence of transverse photon exchange the
specific heat at low temperatures behaves as Tln T rath-
er than linearly as in a normal Fermi liquid. ' Also, in

the absence of screening, integrals over q in the evalua-
tion of transport coefficients diverge at small q either
linearly (in the case of viscosity) or cubically (in the case
of thermal conductivity), ' rather than logarithmically
as we found above. As a consequence of the singular na-
ture of the interaction for small momentum transfers,
the angular and energy integrals in the calculation of
collision rates cannot be decoupled in the standard
manner, '3 and the transport coefficients have a different

temperature dependence than in the usual Landau
theory.
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